CHEN D W, LIU J L, YAO S B, et al. Preliminary study on system configuration of ultra high-speed maglev train aerodynamic problem in the low vacuum tube[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(3): 19-26. DOI: 10.11729/syltlx20220136
Citation: CHEN D W, LIU J L, YAO S B, et al. Preliminary study on system configuration of ultra high-speed maglev train aerodynamic problem in the low vacuum tube[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(3): 19-26. DOI: 10.11729/syltlx20220136

Preliminary study on system configuration of ultra high-speed maglev train aerodynamic problem in the low vacuum tube

More Information
  • Received Date: November 17, 2022
  • Revised Date: January 10, 2023
  • Accepted Date: February 21, 2023
  • The low vacuum tube ultra high-speed maglev system is the next generation of the ultra high-speed ground transportation system, which combines the low vacuum tube and high-speed maglev technologies, and thus can effectively reduce the aerodynamic resistance and aerodynamic noise of the train running at ultra high-speed, to achieve a running speed of 800~1000 km/h, or even more than 1000 km/h. In the present paper, the aerodynamic numerical simulation method of the ultra high-speed maglev train in the low vacuum tube was discussed. The influence of the tube pressure, tube area, and train speed on the aerodynamic performance of the ultra high-speed maglev train in the low vacuum tube, such as the aerodynamic drag, aerodynamic lift, aerodynamic noise source, tube intersection pressure wave, and heating equipment temperature, was studied. And the typical scenarios of the low vacuum tube ultra high-speed maglev system were preliminarily discussed in engineering. The research shows that, when the train speed is 600 km/h, the tube pressure of 1.0 atm–tube area of 100 m2, and the tube pressure of 0.3 atm–tube area of 40 m2, have engineering feasibility; the tube pressure of 0.3 atm–tube area of 100 m2 has the problem of equipment heat dissipation, and the engineering feasibility has certain challenges. When the train speed is 1000 km/h, the equipment head dissipation under the tube pressure of 0.3 atm–tube pressure of 100 m2 is significant, and the engineering feasibility is challenged. If the tube pressure is further reduced, the design difficulty of equipment heat dissipation and airtight strength would be further increased.
  • [1]
    邓自刚, 张勇, 王博, 等. 真空管道运输系统发展现状及展望[J]. 西南交通大学学报, 2019, 54(5): 1063–1072. DOI: 10.3969/j.issn.0258-2724.20180204

    DENG Z G, ZHANG Y, WANG B, et al. Present situation and prospect of evacuated tube transportation system[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 1063–1072. doi: 10.3969/j.issn.0258-2724.20180204
    [2]
    沈志云. 关于我国发展真空管道高速交通的思考[J]. 西南交通大学学报, 2005, 40(2): 133–137. DOI: 10.3969/j.issn.0258-2724.2005.02.001

    SHEN Z Y. On developing high-speed evacuated tube transportation in China[J]. Journal of Southwest Jiaotong University, 2005, 40(2): 133–137. doi: 10.3969/j.issn.0258-2724.2005.02.001
    [3]
    DENG Z G, ZHANG W H, ZHENG J, et al. A high-temperature superconducting maglev-evacuated tube transport (HTS maglev-ETT) test system[J]. IEEE Transactions on Applied Superconductivity, 2017, 27(6): 1–8. doi: 10.1109/TASC.2017.2716842
    [4]
    周晓, 张殿业, 张耀平. 真空管道中阻塞比对列车空气阻力影响的数值研究[J]. 真空科学与技术学报, 2008, 28(6): 535–538. DOI: 10.3969/j.issn.1672-7126.2007.01.015

    ZHOU X, ZHANG D Y, ZHANG Y P. Numerical simulation of blockage rate and aerodynamic drag of high-speed train in evacuated tube transportation[J]. Chinese Journal of Vacuum Science and Technology, 2008, 28(6): 535–538. doi: 10.3969/j.issn.1672-7126.2007.01.015
    [5]
    周晓. 真空管道运输高速列车空气阻力数值仿真[D]. 成都: 西南交通大学, 2008.

    ZHOU X. Numerical simulation on the aerodynamic drag of high-speed train of evacuated tube transportation system [D]. Chengdu: Southwest Jiaotong University, 2008.
    [6]
    KIM T K, KIM K H, KWON H B. Aerodynamic characteristics of a tube train[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2011, 99(12): 1187–1196. doi: 10.1016/j.jweia.2011.09.001
    [7]
    刘加利, 张继业, 张卫华. 真空管道高速列车气动特性分析[J]. 机械工程学报, 2013, 49(22): 137–143. DOI: 10.3901/JME.2013.22.137

    LIU J L, ZHANG J Y, ZHANG W H. Analysis of aerodynamic characteristics of high-speed trains in the evacuated tube[J]. Journal of Mechanical Engineering, 2013, 49(22): 137–143. doi: 10.3901/JME.2013.22.137
    [8]
    刘加利, 张继业, 张卫华. 真空管道高速列车气动阻力及系统参数设计[J]. 真空科学与技术学报, 2014, 34(1): 10–15. DOI: 10.3969/j.issn.1672-7126.2014.01.03

    LIU J L, ZHANG J Y, ZHANG W. Impacts of pressure, blockage-ratio and speed on aerodynamic drag-force of high-speed trains[J]. Chinese Journal of Vacuum Science and Technology, 2014, 34(1): 10–15. doi: 10.3969/j.issn.1672-7126.2014.01.03
    [9]
    刘加利, 张继业, 张卫华. 真空管道高速列车气动噪声源特性分析[J]. 真空科学与技术学报, 2013, 33(10): 1026–1031. DOI: 10.3969/j.issn.1672-7126.2013.10.14

    LIU J L, ZHANG J Y, ZHANG W. Simulation of noise source for high speed train in evacuated tube[J]. Chinese Journal of Vacuum Science and Technology, 2013, 33(10): 1026–1031. doi: 10.3969/j.issn.1672-7126.2013.10.14
    [10]
    陈大伟, 郭迪龙. 低真空管道磁浮列车气动特性[J]. 力学研究, 2019(2): 109–117. DOI: 10.12677/ijm.2019.82013

    CHEN D W, GUO D. Aerodynamic characteristics of maglev train on low evacuated tube[J]. International Journal of Mechanics Research, 2019(2): 109–117. doi: 10.12677/ijm.2019.82013
    [11]
    黄尊地, 梁习锋, 常宁. 真空管道交通列车外流场仿真算法分析[J]. 工程热物理学报, 2018, 39(6): 1244–1250.

    HUANG Z D, LIANG X F, CHANG N. Analysis on simulation algorithm for train outflow field of vacuum pipeline traffic[J]. Journal of Engineering Thermophysics, 2018, 39(6): 1244–1250.
    [12]
    OH J S, KANG T, HAM S, et al. Numerical analysis of aerodynamic characteristics of hyperloop system[J]. Energies, 2019, 12(3): 518. doi: 10.3390/en12030518
    [13]
    BRAUN J, SOUSA J, PEKARDAN C. Aerodynamic design and analysis of the hyperloop[J]. AIAA Journal, 2017, 55(12): 4053–4060. doi: 10.2514/1.J055634
    [14]
    VERSTEEG H K, MALALASEKERA W. An introduction to computational fluid dynamics: the finite volume method[M]. 2nd ed. Harlow, England: Pearson Education Ltd. , 2007.
    [15]
    丁叁叁. 时速600 公里高速磁浮交通系统[M]. 上海: 上海科学技术出版社, 2022.
  • Related Articles

    [1]HE Chao, SUN Peng, LIN Jingzhou, XU Xiaobin, CHEN Lei. Design and application of the dynamic stage separation device in hypersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(5): 90-95. DOI: 10.11729/syltlx20200119
    [2]Wang Xiaopeng, Zhang Chen'an, Liu Chunfeng, Wang Famin, Ye Zhengyin. Support interference and correction of cold-flow force test for air-breathing hypersonic vehicle in wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 27-33. DOI: 10.11729/syltlx20180116
    [3]Ding Feng, Liu Jun, Shen Chibing, Liu Zhen, Chen Shaohua, Huang Wei. An overview of waverider design concept in airframe-inlet integration methodology for air-breathing hypersonic vehicles[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 16-26. DOI: 10.11729/syltlx20180080
    [4]Xu Xiaobin, Shu Haifeng, Xie Fei, Wang Xiong, Guo Leitao. Research progress on aerodynamic test technology of hypersonic wind tunnel for air-breathing aerocraft[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(5): 29-40. DOI: 10.11729/syltlx20180053
    [5]Deng Fan, Ye Youda, Jiao Zihan, Liu Hui. Research on HIFiRE project's hypersonic vehicle integrated design of aerodynamic and scramjet propulsion[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 73-80. DOI: 10.11729/syltlx20160125
    [6]JIANG Wei, YANG Yun-jun, CHEN He-wu. Investigations on aerodynamics of the spike-tipped hypersonic vehicles[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(6): 28-32,53. DOI: 10.3969/j.issn.1672-9897.2011.06.006
    [7]HE Kai-feng, WANG Qing, QIAN Wei-qi, HE Zheng-chun. Review of aerodynamic and aero-thermodynamic parameter estimation research for hypersonic aircraft[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(5): 99-104. DOI: 10.3969/j.issn.1672-9897.2011.05.020
    [8]KHARITONOV A M, ZVEGINTSEV V I, CHIRKASHENKO V F, BRODETSKY M D, MAZHUL I I, VASENEV L G, MUYLAERT J M, KORDULLA W, PAULAT J C. Aerodynamic investigation of aerospace vehicles in the new hypersonic wind tunnel AT-303 at ITAM[J]. Journal of Experiments in Fluid Mechanics, 2006, 20(4): 10-19. DOI: 10.3969/j.issn.1672-9897.2006.04.002
    [9]Heat flux measurement test of the hypersonic vehicle[J]. Journal of Experiments in Fluid Mechanics, 2004, 18(1): 29-32,37. DOI: 10.3969/j.issn.1672-9897.2004.01.007
    [10]The calculations of aerodynamic heating and viscous friction forces on the surface of hypersonic flight vehicle[J]. Journal of Experiments in Fluid Mechanics, 2002, 16(1): 8-20. DOI: 10.3969/j.issn.1672-9897.2002.01.002
  • Cited by

    Periodical cited type(3)

    1. 管新蕾,孙小姣,王维,王利军. 弧形涡流发生器对湍流相干结构及强化换热的影响. 实验流体力学. 2024(04): 104-112 . 本站查看
    2. 朱寅鑫,彭文强,罗振兵,康赢,赵志杰,程盼,刘杰夫. 全叶高合成双射流对大折转角扩压叶栅的影响. 航空学报. 2023(12): 84-95 .
    3. 蔡明,高丽敏,刘哲,黎浩学,陈顺. 亚声速压气机平面叶栅及其改型的吹风试验. 实验流体力学. 2021(02): 36-42 . 本站查看

    Other cited types(0)

Catalog

    Article Metrics

    Article views (279) PDF downloads (32) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close