ZHOU F Q, WANG X S, YANG D G, et al. Propagation characteristics of dynamic feature in transonic cavity shear layer[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(1): 103-108. DOI: 10.11729/syltlx20230066
Citation: ZHOU F Q, WANG X S, YANG D G, et al. Propagation characteristics of dynamic feature in transonic cavity shear layer[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(1): 103-108. DOI: 10.11729/syltlx20230066

Propagation characteristics of dynamic feature in transonic cavity shear layer

More Information
  • Received Date: May 04, 2023
  • Revised Date: June 25, 2023
  • Accepted Date: June 29, 2023
  • Available Online: July 17, 2023
  • In the shear layer of the open cavity flow, the vortex interacts with the pre-transmission sound wave, causing self-sustaining oscillation. For a cavity model with a length-to-depth ratio of 7, the dynamic characteristics of the shear layer in the cavity were tested under the incoming flow condition of Mach number 0.9 by the pulsating pressure measurement technology, and the propagation law of the modal noise in the shear layer is revealed by the spectrum analysis and cross-correlation analysis. The results show that the superposition of the monotonically increasing broadband noise and cosine-like modal noise in the shear layer causes the wave-rise characteristics of the overall dynamic of the shear layer. The modal noise propagates in the reverse flow direction, its velocity is also cosine-like, and the change trend is consistent with the modal noise amplitude. Combined with the Rossiter mode estimation theory, it is revealed that the interaction between modal sound waves and vortices of the same frequency produces a standing wave-like phenomenon, resulting in periodic changes in the power spectrum density and propagation velocity of the modal noise along the flow direction.
  • [1]
    ROSSITER J E. Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds[R]. Reports and Memoranda No. 3438, 1964.
    [2]
    HELLER H H, HOLMES D G, COVERT E E. Flow-induced pressure oscillations in shallow cavities[J]. Journal of Sound and Vibration, 1971, 18(4): 545–553. doi: 10.1016/0022-460x(71)90105-2
    [3]
    CARR D. An experimental investigation of open cavity pressure oscillations[R]. AD-787-700, 1974.
    [4]
    [1]吴继飞, 周方奇, 徐来武, 等.基于PIV技术的高速空腔流动演化特性研究[J]. 实验流体力学, 2023, 37(6): 34-41.doi: 10.11729/syltlx20210144.

    WU J F, ZHOU F Q, XU L W, et al. Evolution of high-speed cavity flow based on PIV technology[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(6): 34-41. doi: 10.11729/syltlx20210144.
    [5]
    KNISELY C, ROCKWELL D. Self-sustained low-frequency components in an impinging shear layer[J]. Journal of Fluid Mechanics, 1982, 116: 157–186. doi: 10.1017/s002211208200041x
    [6]
    LIU X F, KATZ J. Vortex-corner interactions in a cavity shear layer elucidated by time-resolved measurements of the pressure field[J]. Journal of Fluid Mechanics, 2013, 728: 417–457. doi: 10.1017/jfm.2013.275
    [7]
    BIAN S Y, DRISCOLL J F, ELBING B R, et al. Time resolved flow-field measurements of a turbulent mixing layer over a rectangular cavity[J]. Experiments in Fluids, 2011, 51(1): 51–63. doi: 10.1007/s00348-010-1025-7
    [8]
    CROOK S D, LAU T C W, KELSO R M. Three-dimensional flow within shallow, narrow cavities[J]. Journal of Fluid Mechanics, 2013, 735: 587–612. doi: 10.1017/jfm.2013.519
    [9]
    SCHMIT R, McGAHA C, TEKELL J, et al. Performance results for the optical turbulence reduction cavity[C]//Proc of the 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. 2009. doi: 10.2514/6.2009-702
    [10]
    SCHMIT R, SEMMELMAYER F, HAVERKAMP M, et al. Analysis of cavity passive flow control using high speed shadowgraph images[C]//Proc of the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2012. doi: 10.2514/6.2012-738
    [11]
    SCHMIT R, SEMMELMAYER F, HAVERKAMP M, et al. Examining passive flow control devices with high speed shadowgraph images around a Mach1.5 cavity flow field[C]//Proc of the 6th AIAA Flow Control Conference. 2012. doi: 10.2514/6.2012-3139
    [12]
    WANG X S, YANG D G, LIU J, et al. Control of pressure oscillations induced by supersonic cavity flow[J]. AIAA Journal, 2020, 58(5): 2070–2077. doi: 10.2514/1.j059014
    [13]
    周方奇, 杨党国, 王显圣, 等. 前缘直板扰流对高速空腔的降噪效果分析[J]. 航空学报, 2018, 39(4): 128–138. DOI: 10.7527/S1000-6893.2017.21812

    ZHOU F Q, YANG D G, WANG X S, et al. Effect of leading edge plate on high speed cavity noise control[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(4): 128–138. doi: 10.7527/S1000-6893.2017.21812
    [14]
    THANGAMANI V, KNOWLES K, SADDINGTON A. The effects of scaling on high subsonic cavity flow oscillations and control[C]//Proc of the 18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA Aeroacoustics Conference). 2012. doi: 10.2514/6.2012-2052
    [15]
    THANGAMANI V, SADDINGTON A, KNOWLES K. An investigation of passive control methods for a large scale cavity model in high subsonic flow[C]//Proc of the 19th AIAA/CEAS Aeroacoustics Conference. 2013. doi: 10.2514/6.2013-2049
    [16]
    SADDINGTON A J, KNOWLES K, THANGAMANI V. Scale effects on the performance of sawtooth spoilers in transonic rectangular cavity flow[J]. Experiments in Fluids, 2016, 57(1): 1–12. doi: 10.1007/s00348-015-2088-2
    [17]
    LUO K Y, ZHU W Q, XIAO Z X, et al. Investigation of spectral characteristics by passive control methods past a supersonic cavity[J]. AIAA Journal, 2018, 56(7): 2669–2686. doi: 10.2514/1.j056689
    [18]
    DUDLEY J, UKEILEY L. Suppression of fluctuating surface pressures in a supersonic cavity flow[C]//Proc of the 5th Flow Control Conference. 2010. doi: 10.2514/6.2010-4974
    [19]
    DUDLEY J, UKEILEY L. Detached eddy simulation of a supersonic cavity flow with and without passive flow control[C]//Proc of the 20th AIAA Computational Fluid Dynamics Conference. 2011. doi: 10.2514/6.2011-3844
    [20]
    DUDLEY J G, UKEILEY L. Passively controlled supersonic cavity flow using a spanwise cylinder[J]. Experiments in Fluids, 2014, 55(9): 1810. doi: 10.1007/s00348-014-1810-9
    [21]
    杨党国. 内埋武器舱气动声学特性与噪声抑制研究[D]. 绵阳: 中国空气动力研究与发展中心, 2010.
  • Related Articles

    [1]GONG Xuechun, WANG Feng, XI Hengdong, XU Haitao. Effects of the spatial resolution of planar PIV on measured turbulence multi-point statistics[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(4): 44-57. DOI: 10.11729/syltlx20240002
    [2]LIANG Zhi, HU Fei, SHI Yu, ZHANG Zhe, LIU Lei. Research of mast shadow effect on the average wind speed and turbulence intensity by field experiment[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(2): 88-97. DOI: 10.11729/syltlx20220010
    [3]LIU Zhaoyang, WANG Xinwei, WANG Xuan, LI Biaohui, WANG Yufei, JIANG Nan. Experimental study of the mechanism of drag reduction in turbulent boundary layers on the superhydrophobic structured wall with microstructure[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20220016
    [4]WANG Xuan, FAN Ziye, CHEN Letian, TANG Zhanqi, JIANG Nan. Experimental study of TRPIV for turbulent boundary layer of longitudinal concave curvature wall[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(6): 1-9. DOI: 10.11729/syltlx20210084
    [5]Liu Tiefeng, Wang Xinwei, Tang Zhanqi, Jiang Nan. TRPIV experimental study of the effect of superhydrophobic surface on the coherent structure of turbulent boundary layer[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 90-96. DOI: 10.11729/syltlx20180101
    [6]Ding Cunwei, Li Zhoufu, Zhang Xue, Zhou Guocheng. Research on microphone phase array design based on surrogate model[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(4): 93-98, 103. DOI: 10.11729/syltlx20170151
    [7]Wang Yong, Hao Nansong, Geng Zihai, Wang Wanbo. Measurements of circular cylinder's wake using time-resolved PIV[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1): 64-70. DOI: 10.11729/syltlx20170099
    [8]Bai Jianxia, Zheng Xiaobo, Jiang Nan. Phase-averaging waveforms of superstructures in outer layer of turbulent boundary layer[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(5): 1-8. DOI: 10.11729/syltlx20160064
    [9]GUO Ai-dong, JIANG Nan, JIA Yong-xia. Measurement of phase difference for eddy viscosity model equation of turbulence[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(4): 1-8. DOI: 10.3969/j.issn.1672-9897.2011.04.001
    [10]ZHENG Long-xi, YAN Chuan-jun, FAN Wei, LI Mu, WANG Zhi-wu. Calculation and experimental investigation on average thrust characteristics of a model pulse detonation engine[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(3): 61-66. DOI: 10.3969/j.issn.1672-9897.2005.03.013

Catalog

    Article Metrics

    Article views (871) PDF downloads (31) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close