LI Y F, LI T, ZHANG J Y, et al. Effect of deflector devices on the aerodynamic characteristics of high-speed maglev trains[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(1): 91-99. DOI: 10.11729/syltlx20220109
Citation: LI Y F, LI T, ZHANG J Y, et al. Effect of deflector devices on the aerodynamic characteristics of high-speed maglev trains[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(1): 91-99. DOI: 10.11729/syltlx20220109

Effect of deflector devices on the aerodynamic characteristics of high-speed maglev trains

More Information
  • Received Date: October 24, 2022
  • Revised Date: November 16, 2022
  • Accepted Date: December 11, 2022
  • Available Online: March 09, 2023
  • Due to the existence of suspension gap, the flow field around the suspension frame of high-speed maglev trains is turbulent and aerodynamically complex, which in turn affects the suspension and guidance performance of the trains. Based on Computational Fluid Dynamics (CFD), a numerical simulation model of the three-car marshalling high-speed maglev train is established to study the aerodynamic characteristics and the flow field structure. The results show that the airflow through the suspension gap impacts directly on the windward side of the suspension frame of the head car at a speed of 500 km/h. This creates a differential pressure drag which increases the aerodynamic drag of the head car significantly. A large area of the positive pressure area is formed at the bottom of the car body due to the airflow turbulence of the suspension frame, leading to a large increase in the aerodynamic lift force of the head car that is much higher than that of the middle car and the tail car. According to the results, three different types of deflector devices are proposed to control the airflow through the gap by changing the structure of the nose of the head car, which can significantly improve the pressure distribution on the train surface. The aerodynamic drag, aerodynamic lift and pitch moment of the train are effectively and synergistically reduced. Compared with the original maglev train, all three types of deflector devices (plate, short wedge, long wedge) can achieve both aerodynamic drag and lift forces reduction, among which the best long wedge deflector device can reduce the overall aerodynamic drag force by 3.6%, the head car aerodynamic lift by 40.6% and the head car pitch moment by 80.3%, with the best comprehensive aerodynamic characteristics.
  • [1]
    宋嘉源, 李田, 张晓涵, 等. 亚声速真空管道磁浮系统气动热特性研究[J]. 空气动力学学报, 2022, 40(2): 115–121. DOI: 10.7638/kqdlxxb-2021.0227

    SONG J Y, LI T, ZHANG X H, et al. Research on aerodynamic and thermal characteristics of subsonic evacuated tube maglev system[J]. Acta Aerodynamica Sinica, 2022, 40(2): 115–121. doi: 10.7638/kqdlxxb-2021.0227
    [2]
    毕海权, 雷波, 张卫华. TR磁浮列车湍流外流场数值计算[J]. 西南交通大学学报, 2005, 40(1): 5–8. DOI: 10.3969/j.issn.0258-2724.2005.01.002

    BI H Q, LEI B, ZHANG W H. Numerical calculation for turbulent flow around TR maglev train[J]. Journal of Southwest Jiaotong University, 2005, 40(1): 5–8. doi: 10.3969/j.issn.0258-2724.2005.01.002
    [3]
    ZHOU P, LI T, ZHAO C F, et al. Numerical study on the flow field characteristics of the new high-speed maglev train in open air[J]. Journal of Zhejiang University-SCIENCE A, 2020, 21(5): 366–381. doi: 10.3969/j.issn.0258-2724.2005.02.001
    [4]
    倪章松, 张军, 符澄, 等. 磁浮飞行风洞试验技术及应用需求分析[J]. 空气动力学学报, 2021, 39(5): 95–110. DOI: 10.7638/kqdlxxb-2021.0206

    NI Z S, ZHANG J, FU C, et al. Analyses of the test techniques and applications of maglev flight tunnels[J]. Acta Aerodynamica Sinica, 2021, 39(5): 95–110. doi: 10.7638/kqdlxxb-2021.0206
    [5]
    胡啸, 马天昊, 王潇飞, 等.真空管道磁浮交通车体热压载荷分布特征及其非定常特性[J/OL]. [2022-11-01]. 实验流体力学.http://kns.cnki.net/kcms/detail/11.5266.V.20220913.0905.002.html.

    HU X, MA T H, WANG X F, et al. Distribution and unsteady characteristics of the temperature and pressure loads acting on the car-body in evacuated tube maglev transport[J/OL]. [2022-11-01]. Journal of Experiments in Fluid Mechanics.http://kns.cnki.net/kcms/detail/11.5266.V.20220913.0905.002.html. doi: 10.11729/syltlx20220084
    [6]
    刘堂红, 田红旗, 王承尧. 不同磁浮列车外形的气动性能比较[J]. 国防科技大学学报, 2006, 28(3): 94–98. DOI: 10.3969/j.issn.1001-2486.2006.03.020

    LIU T H, TIAN H Q, WANG C Y. Aerodynamic performance comparison of several kind of nose shapes of maglev train[J]. Journal of National University of Defense Technology, 2006, 28(3): 94–98. doi: 10.3969/j.issn.1001-2486.2006.03.020
    [7]
    毕海权, 雷波, 张卫华. TR型磁浮列车气动力特性数值计算研究[J]. 铁道学报, 2004, 26(4): 51–54. DOI: 10.3321/j.issn:1001-8360.2004.04.011

    BI H Q, LEI B, ZHANG W H. Research on numerical calculation for aerodynamic characteristics of the TR maglev train[J]. Journal of the China Railway Society, 2004, 26(4): 51–54. doi: 10.3321/j.issn:1001-8360.2004.04.011
    [8]
    毕海权, 雷波, 张卫华. 自然风对高速磁浮列车气动特性的影响[J]. 中国铁道科学, 2007, 28(2): 65–70. DOI: 10.3321/j.issn:1001-4632.2007.02.012

    BI H Q, LEI B, ZHANG W H. Effects of natural wind on aerodynamic characteristics of high-speed maglev train[J]. China Railway Science, 2007, 28(2): 65–70. doi: 10.3321/j.issn:1001-4632.2007.02.012
    [9]
    李人宪, 刘应清, 翟婉明. 高速磁悬浮列车纵向及垂向气动力数值分析[J]. 中国铁道科学, 2004, 25(1): 8–12. DOI: 10.3321/j.issn:1001-4632.2004.01.002

    LI R X, LIU Y Q, ZHAI W M. Numerical analysis of aerodynamic force in longitudinal and vertical direction for high-speed maglev train[J]. China Railway Science, 2004, 25(1): 8–12. doi: 10.3321/j.issn:1001-4632.2004.01.002
    [10]
    孟石, 周丹, 孟爽. 轨道间隙对磁浮列车气动性能的影响[J]. 中南大学学报(自然科学版), 2020, 51(12): 3537–3545.

    MENG S, ZHOU D, MENG S. Effect of rail gap on aerodynamic performance of maglev train[J]. Journal of Central South University(Science and Technology), 2020, 51(12): 3537–3545.
    [11]
    丁叁叁, 姚拴宝, 陈大伟. 高速磁浮列车气动升力特性[J]. 机械工程学报, 2020, 56(8): 228–234. DOI: 10.3901/JME.2020.08.228

    DING S S, YAO S B, CHEN D W. Aerodynamic lift force of high-speed maglev train[J]. Journal of Mechanical Engineering, 2020, 56(8): 228–234. doi: 10.3901/JME.2020.08.228
    [12]
    戴志远, 李田, 张卫华, 等. 气动翼对高速磁悬浮列车升力特性的影响[J]. 西南交通大学学报, 2022, 57(3): 498–505. DOI: 10.3969/j.issn.0258-2724.20210855

    DAI Z Y, LI T, ZHANG W H, et al. Effect of aerodynamic wings on lift force characteristics of high-speed maglev train[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 498–505. doi: 10.3969/j.issn.0258-2724.20210855
    [13]
    夏超, 单希壮, 杨志刚, 等. 风洞地面效应对高速列车空气动力学特性的影响[J]. 铁道学报, 2015, 37(4): 8–16. DOI: 10.3969/j.issn.1001-8360.2015.04.002

    XIA C, SHAN X Z, YANG Z G, et al. Influence of ground effect in wind tunnel on aerodynamics of high speed train[J]. Journal of the China Railway Society, 2015, 37(4): 8–16. doi: 10.3969/j.issn.1001-8360.2015.04.002
    [14]
    LI T, QIN D, ZHANG J Y. Effect of RANS turbulence model on aerodynamic behavior of trains in crosswind[J]. Chinese Journal of Mechanical Engineering, 2019, 32(5): 155–166. doi: 10.1186/s10033-019-0402-2
    [15]
    LI T, HEMIDA H, ZHANG J Y, et al. Comparisons of shear stress transport and detached eddy simulations of the flow around trains[J]. Journal of Fluids Engineering, 2018, 140(11): 11108–1. doi: 10.1115/1.4040672
    [16]
    LI T, DAI Z Y, YU M G, et al. Numerical investigation on the aerodynamic resistances of double-unit trains with different gap lengths[J]. Engineering Applications of Computational Fluid Mechanics, 2021, 15(1): 549–560. doi: 10.1080/19942060.2021.1895321
  • Related Articles

    [1]DONG Lin, WEN Guoan, LEI Ziwei, RINOSHIKA Akira. PIV experimental study on vortex structures induced by free autorotation fall of a samaras[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(5): 54-60. DOI: 10.11729/syltlx20200004
    [2]FU Hao, HE Chuangxin, LIU Yingzheng. PIV experimental study on flow characteristics of a low swirl number precessing jet[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(3): 39-45. DOI: 10.11729/syltlx20200129
    [3]WANG Fujun, WANG Hongping, GAO Qi, WEI Runjie, LIU Yanpeng. PIV experimental study on fish swimming vortex structure[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(5): 20-28. DOI: 10.11729/syltlx20200039
    [4]SHEN Feng, YAN Chengjin, LI Mengqi, JI Deru, LIU Zhaomiao. Micro-PIV study on flow field characteristics of droplets in a microcavity[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 67-72. DOI: 10.11729/syltlx20190117
    [5]Zhang Jun, Bai Yaqiang, Zhai Shucheng, Zhang Guoping, Xu Lianghao. PIV measurement on streamwise vortex generated by undulating fins[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(6): 15-21. DOI: 10.11729/syltlx20170017
    [6]Liu Ping'an, Lin Yongfeng, Chen Yaofeng, Yuan Mingchuan. Blade tip vortex measurements of a hovering rotor[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4): 39-44. DOI: 10.11729/syltlx20160186
    [7]Wu Jinhua, Sun Haisheng, Shen Zhihong, Jiang Yubiao. 旋转流场下的振荡动导数试验技术研究[J]. Journal of Experiments in Fluid Mechanics, 2014, (4): 54-58. DOI: 10.11729/syltlx20130057
    [8]WU Wen-fei, XIE Jing-xing, GONG Zhi-jun, LI Bao-wei. PIV measurements of the turbulence integral length scale on cold combustion flow field in burner zone of tangential firing boiler[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(2): 38-41,50. DOI: 10.3969/j.issn.1672-9897.2012.02.008
    [9]LI Hao, LIN Ming, ZHANG Yu-shan, SHEN Ji-kui, CHEN Chun-de. Study on centeral-dump combustor by PIV[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(4): 45-49,59. DOI: 10.3969/j.issn.1672-9897.2011.04.009
    [10]ZHANG Xiao-di, JIANG Jia-li, JIA Yuan-sheng, MA Hong-zhi, XIAO Ya-ke. Measurements of cylinder's wake by PIV[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(2): 74-78. DOI: 10.3969/j.issn.1672-9897.2005.02.015
  • Cited by

    Periodical cited type(1)

    1. 张怀宝,王靖宇,Bailey Sean C.C.,王光学,邓小刚. 低雷诺数壁面约束流动皮托管测速误差分析与校正. 国防科技大学学报. 2018(03): 37-41 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (4002) PDF downloads (47) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close