Liu Bing, He Guoqiang, Qin Fei. Experimental study on ignition process for ethylene high speed jet[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 24-27. DOI: 10.11729/syltlx20180003
Citation: Liu Bing, He Guoqiang, Qin Fei. Experimental study on ignition process for ethylene high speed jet[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 24-27. DOI: 10.11729/syltlx20180003

Experimental study on ignition process for ethylene high speed jet

More Information
  • Received Date: January 02, 2018
  • Revised Date: March 07, 2018
  • In order to investigate the ignition process with fuel-rich gas of scramjet combustor, a simplified burner with fuel-rich hot coflow and sonic nozzle jet was designed. Ignition process of sonic ethylene jet issuing into a coflow of hot exhaust products of a rich premixed ethylene/air flat flame was examined using the chemiluminescence. Three cases with the equivalence ratio of coflow varying from 1.4 to 1.6 and the injection pressure varying from 2atm to 3atm were examined. The results indicate that:(1) the ignition process of sonic ethylene jet in fuel-rich gas may be divided into four steps:(a) jet and coflow mixing; (b) strong chemical reactions between jet and surrounding air; (c) occurrence of extinction in the downstream of flame; (d) steady flame; (2) the equivalence ratio of coflow 1.4 was more effective than 1.6 for ignition process; (3) with the increase of jet velocity, flame luminosity is lowered due to incomplete burning in the higher speed steady flame.
  • [1]
    张弯洲, 乐嘉陵, 杨顺华, 等. Ma4下超燃发动机乙烯点火及火焰传播过程试验研究[J].实验流体力学, 2016, 30(3):40-46. http://www.syltlx.com/CN/abstract/abstract10932.shtml

    Zhang W Z, Le J L, Yang S H, et al. Experimental research on ethylene ignition and flame propagation processes for scramjet at Ma4[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(3):40-46. http://www.syltlx.com/CN/abstract/abstract10932.shtml
    [2]
    Kumaran K, Behera P R, Babu V. Numerical investigation of the supersonic combustion of kerosene in a strutbased combustor[J]. Journal of Propulsion and Power, 2010, 26(5):1084-1091. DOI: 10.2514/1.46965
    [3]
    Kumaran K, Babu V. Mixing and combustion characteristics of kerosene in a model supersonic combustor[J]. Journal of Propulsion and Power, 2009, 25(3):583-592. DOI: 10.2514/1.40140
    [4]
    Manna P, Behera R, Chakraborty D. Liquid-fueled strut-based scramjet combustor design:a computational fluid dynamics approach[J]. Journal of Propulsion and Power, 1971, 24(2):274-281. http://www.ijsrd.com/Article.php?manuscript=IJSRDV2I9028
    [5]
    Oldenhof E, Tummers M J, Veen E H V, et al. Ignition kernel formation and lift-off behaviour of jet-in-hot-coflow flames[J]. Combustion & Flame, 2010, 157(6):1167-1178. https://www.sciencedirect.com/science/article/pii/S0010218010000131
    [6]
    Oldenhof E, Tummers M J, Veen E H V, et al. Role of entrainment in the stabilisation of jet-in-hot-coflow flames[J]. Combustion & Flame, 2011, 158(8):1553-1563. https://www.sciencedirect.com/science/article/pii/S001021801000372X
    [7]
    Oldenhof E, Tummers M J, Veen E H V, et al. Transient response of the Delft jet-in-hot coflow flames[J]. Combustion & Flame, 2012, 159(2):697-706. https://www.sciencedirect.com/science/article/pii/S0010218011002343
    [8]
    Oldenhof E, Tummers M J, Veen E H V, et al. Conditional flow field statistics of jet-in-hot-coflow flames[J]. Combustion & Flame, 2013, 160(8):1428-1440. https://www.sciencedirect.com/science/article/pii/S0010218013000916
    [9]
    Gordon R L, Masri A R. Mastorakos E. Simultaneous Rayleigh temperature, OH-and CH2O-LIF imaging of methane jets in a vitiated coflow[J]. Combustion and Flame, 2008, 155(1-2):181-195. DOI: 10.1016/j.combustflame.2008.07.001
    [10]
    Masri A R. Heat release rate as represented by×and its role in autoignition[J]. Combustion Theory & Modelling, 2009, 13(4):645-670. http://adsabs.harvard.edu/abs/2009CTM....13..645G
    [11]
    沈雪豹, 叶桃红, 严野, 等.湍流射流火焰抬举高度的实验研究[J].工业加热, 2014, 43(6):6-10. http://www.cnki.com.cn/Article/CJFDTotal-GYJR201406004.htm

    Shen X B, Ye T H, Yan Y, et al. Studying of lifted height of jet flame in turbulent combustion by experiment[J]. Industrial Heating, 2014, 43(6):6-10. http://www.cnki.com.cn/Article/CJFDTotal-GYJR201406004.htm
    [12]
    闫小龙, 林其钊, 严野, 等.可控有损热伴流燃烧器的性能研究[J].工业加热, 2013, 42(5):4-6. http://www.cqvip.com/QK/93207A/201305/47787250.html

    Yan X L, Lin Q Z, Yan Y, et al. Design and resrarch on charcteristiics of controllable of a vitiated coflow combustor[J]. Industrial Heating, 2013, 42(5):4-6. http://www.cqvip.com/QK/93207A/201305/47787250.html
    [13]
    Cheng T S, Wehrmeyer J A, Pitz R W, et al. Raman measurement of mixing and finite-rate chemistry in a supersonic hydrogen-air diffusion flame[J]. Combustion & Flame, 1994, 99(1):157-173.
    [14]
    Weisgerber H, Martinuzzi R, Brummund U, et al. PIV measurements in a Mach 2 hydrogen-air supersonic combustion[C]. AIAA/Nal-Nasda-Isas International Space Planes and Hypersonic Systems and Technologies Conference, 2013.
    [15]
    张弯洲, 乐嘉陵, 杨顺华, 等.马赫数4下氢气自燃辅助乙烯点火实验研究[J].推进技术, 2013, 34(12):1628-1635. http://www.cnki.com.cn/Article/CJFDTotal-DJZD201505027.htm

    Zhang W Z, Le J L, Yang S H, et al. Experimental research on eth-ylene ignition with hydrogen self-ignition assistant at Mach 4[J]. Journal of Propulsion Technology, 2013, 34(12):1268-1635. http://www.cnki.com.cn/Article/CJFDTotal-DJZD201505027.htm
    [16]
    Ombrello T M, Carter C D, Tam C J, et al. Cavity ignition in supersonic flow by spark discharge and pulse detonation[J]. Proceedings of the Combustion Institute, 2015, 35(2):2101-2108. DOI: 10.1016/j.proci.2014.07.068
  • Related Articles

    [1]GAO Mingchuan, MIN Fu, XIE Zhendong, YANG Yanguang. Research on static calibration of wind tunnel balances based on improved BP neural network[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20230149
    [2]KANG Jinxin, TONG Yiheng, HUANG Kejia, GUO Kangkang, FENG Songjiang. Preliminary experimental study on the crushing length of centrifugal single and double injectors liquid film[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20230084
    [3]XU Yi, CHENG Yuzhu, WANG Chuan, FU Shuai, JIN Yakang, CHEN Longquan. Study on the morphology and mechanical properties of solid, liquid and gas nanoscopic soft matter in liquid phase[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20230095
    [4]HE Xuzhao, ZHOU Zheng, ZHANG Juntao, HE Yuanyuan, WU Yingchuan. Mass flux measurement and comparison study of simulation and experiment on curved cone waverider forebody inlet[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(6): 18-23. DOI: 10.11729/syltlx20190095
    [5]ZHANG Haixiang, HE Feng, ZHANG Xiwen, HAO Pengfei. Experimental investigation on the dynamic behaviors of droplets impacting on ultrasonically vibrating curve surfaces[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 1-8. DOI: 10.11729/syltlx20200036
    [6]Zheng Xiaogang, Li Zhonglong, Li Yiqing, Zhang Xu, Zhu Chengxiang, You Yancheng. Integrated design and experimental research for curved fore-body and 3D inward turning inlet[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(5): 28-35, 48. DOI: 10.11729/syltlx20190019
    [7]Chang Siyuan, Zou Dongyang, Liu Jun. Simulating hypersonic projectile launching process in the ballistic range by Adaptive Discontinuity Fitting solver technique[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(2): 23-29. DOI: 10.11729/syltlx20180104
    [8]Wei Feng, Zhou Zheng, Li Li, He Xuzhao. Experimental studies of Curved Cone Waverider forebody Inlet(CCWI) at low Mach number range[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(6): 1-7. DOI: 10.11729/syltlx20170049
    [9]Jiang Junze, Zhang Weiming, Yong Qiwei, Jiang Ming. Experimental study on characteristics of the liquid holdup during mobile pipe draining[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(4): 48-55. DOI: 10.11729/syltlx20150152
    [10]LI Guo-shuai, FAN Zhao-lin, MA Hu-sheng, ZHOU Qiang, XIONG Jian, XUE Sheng-wei. Theoretical study of pressure-sensitive paint technique based on stern-volmer relation[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(3): 76-80. DOI: 10.3969/j.issn.1672-9897.2012.03.014
  • Cited by

    Periodical cited type(3)

    1. 罗杰,马昊军,王国林,肖学仁. 激光诱导荧光技术在高焓空气氮原子测量中的应用. 光谱学与光谱分析. 2021(07): 2135-2141 .
    2. 闫楠楠. 原子荧光技术在水环境检测中的应用研究. 资源节约与环保. 2021(10): 51-53 .
    3. 乐吴生,黄生洪. 高热流条件下翅片凹腔内超汽化换热的微距PLIF观测. 实验力学. 2019(04): 591-599 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (260) PDF downloads (9) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close