Zhou Jian, Ou Ping, Liu Peiqing, Guo Hao. Numerical study of ground effects on high speed train aerodynamic drag[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(4): 26-31. DOI: 10.11729/syltlx20150124
Citation: Zhou Jian, Ou Ping, Liu Peiqing, Guo Hao. Numerical study of ground effects on high speed train aerodynamic drag[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(4): 26-31. DOI: 10.11729/syltlx20150124

Numerical study of ground effects on high speed train aerodynamic drag

More Information
  • Received Date: October 11, 2015
  • Revised Date: February 18, 2016
  • Based on wind tunnel tests of aerodynamic drag on two kinds of 1/25th scale CRH2 models, research of aerodynamic drag with different experimental ground planes was carried out by numerical simulation. The reliability of the numerical methods was verified by comparing the results of simulation and tests. By analyzing the variation of the flow field and resistance distribution on the train body with the usage of the wind tunnel wall, the stationary ground plane, and the moving ground plane in simulation, it is found that: ground effects of different planes have a great influence on the drag measurement of the high speed train; the moving ground plane gives the best simulation performance; the results of drag computed with the other two ground planes are less than that with the moving plane and the difference increases with the increase of the body length, therefore, it is almost impossible to simulate the flow field of the real train operation. Finally the mechanism of influence by ground planes is analyzed and references are provided for drag measurement of high speed train on different ground planes.
  • [1]
    田红旗, 高广军. 270km/h高速列车气动性能研究[J]. 中国铁道科学, 2003, 24(2): 14-18. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200302003.htm

    Tian H Q, Gao G J. The analysis and evaluation on the aerodynamic behavior of 270km·h-1 high-speed train[J]. China Railway Science, 2003, 24(2): 14-18. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200302003.htm
    [2]
    黄志祥, 陈立, 蒋科林. 高速列车模型编组长度和风挡结构对气动阻力的影响[J]. 实验流体力学, 2012, 26(5): 37-41. http://syltlx.cars.org.cn/CN/article/searchArticle.do#

    Huang Z X, Chen L, Jiang K L. Influence of length of train formation and vestibule diaphragm structure on aerodynamic drag of high speed train model[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(5): 37-41. http://syltlx.cars.org.cn/CN/article/searchArticle.do#
    [3]
    梁习锋, 田红旗, 邹建军. 动力车纵向气动力风洞试验及数值模拟[J]. 国防科技大学学报, 2003, 25(6): 101-105. http://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ200306023.htm

    Liang X F, Tian H Q, Zou J J. The wind tunnel test and numerical simulation of longitudinal aerodynamic force of the traction car[J]. Journal of National University of Defense Technology, 2003, 25(6): 101-105. http://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ200306023.htm
    [4]
    易仕和, 陈宏, 邹建军, 等. 低速风洞均匀抽吸地板系统[J]. 国防科技大学学报, 1998, 20(1): 23-26. http://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ199801005.htm

    Yi S H, Chen H, Zou J J, et al. A plate system with uniform suction in low speed wind tunnel[J]. Journal of National University of Defense Technology, 1998, 20(1): 23-26. http://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ199801005.htm
    [5]
    Tyll J, Liu D, Schetz J A, et al. Experimental studies of maglev aerodynamics [J]. AIAA Journal, 1995, 95-1917. http://cn.bing.com/academic/profile?id=2316185370&encoded=0&v=paper_preview&mkt=zh-cn
    [6]
    田红旗. 列车空气动力学[M]. 北京: 中国铁道出版社, 2007: 95-96.

    Tian H Q. Train aerodynamics[M]. Beijing: China Railway Publishing House, 2007: 95-96.
    [7]
    Joseph A S. Aerodynamics of high-speed trains[J]. Annual Review of Fluid Mechanics, 2001, 33(1): 371-414 DOI: 10.1146/annurev.fluid.33.1.371
    [8]
    Raghuathan S, Kim H D, Setoguchi T. Aerodynamics of high-speed trains[J]. Progress in Aerospace Sciences, 2002, 38(1): 469-514. http://cn.bing.com/academic/profile?id=2103647363&encoded=0&v=paper_preview&mkt=zh-cn
    [9]
    Baker C. The flow around high speed trains[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(6-7): 277-298. DOI: 10.1016/j.jweia.2009.11.002
    [10]
    陈燕荣, 肖友刚. 高速列车空气动力学性能计算[J]. 铁道车辆, 2009, 47(1): 14-16. http://www.cnki.com.cn/Article/CJFDTOTAL-TDCL200901008.htm

    Chen Y R, Xiao Y G. Calculation in aerodynamics performance of high speed train[J]. Rolling Stock, 2009, 47(1): 14-16. http://www.cnki.com.cn/Article/CJFDTOTAL-TDCL200901008.htm
    [11]
    陈锐林, 曾庆元, 向俊, 等. 高速列车不同头部形状的气动性能研究[J]. 湖南科技大学学报(自然科学版), 2009, 24(1): 45-48. http://www.cnki.com.cn/Article/CJFDTOTAL-XTKY200901012.htm

    Chen R L, Zeng Q Y, Xiang J, et al. Study on the performances of aerodynamics of high speed train with different nose shapes[J]. Journal of Hunan University of Science Technology(Natural Science Edition), 2009, 24(1): 45-48. http://www.cnki.com.cn/Article/CJFDTOTAL-XTKY200901012.htm
    [12]
    梁家惠, 李朝荣, 徐平, 等. 基础物理实验[M]. 北京: 北京航空航天大学出版社, 2005: 18-25.
    [13]
    Willemsen E. High Reynolds number wind tunnel experiments on trains[J]. Journal of Wind Engineering and Industrial Aerodynamics, 69 71 1997: 437-447.
    [14]
    王英学, 高波, 赵文成, 等. 高速列车进出隧道空气动力学特征模型试验分析[J]. 流体力学试验与测量, 2004, 18(3): 73-78. http://www.cnki.com.cn/Article/CJFDTOTAL-LTLC200403016.htm

    Wang Y X, Gao B, Zhao W C, et al. New development of the aerodynamics of high-speed trains passing in and out tunnels[J]. Experiments and Measurements in Fluid Mechanics, 2004, 18(3): 73-78. http://www.cnki.com.cn/Article/CJFDTOTAL-LTLC200403016.htm
    [15]
    赵文成, 高波, 王英学, 等. 高速列车通过隧道时压力波动过程的模型试验[J]. 现代隧道技术, 2004, 41(6): 16-19. http://www.cnki.com.cn/Article/CJFDTOTAL-XDSD200406003.htm

    Zhao W C, Gao B, Wang Y X, et al. Analysis of the pressure wave variation generated by a high-speed train passing through a tunnel[J]. Modern Tunnelling Technology, 2004, 41(6): 16-19. http://www.cnki.com.cn/Article/CJFDTOTAL-XDSD200406003.htm
  • Related Articles

    [1]GAO Lihua, HUANG Longtai, FU Hao, WANG Kunlun, HUANG Yong. Wind tunnel test for aerodynamics of wing-in-ground craft flying near smooth/wavy surface[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(5): 68-74. DOI: 10.11729/syltlx20200077
    [2]LUO Changtong, HU Zongmin, LIU Yunfeng, JIANG Zonglin. Research progress on ground-to-flight correlation of aerodynamic force and heating data from hypersonic wind tunnels[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(3): 78-89. DOI: 10.11729/syltlx20200006
    [3]Miao Wenbo, Shi Ketian, Ou Dongbin, Cao Zhanwei, Ai Bangcheng. Analysis of surface recombination effect in arc-jet aero-heating test[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 20-24. DOI: 10.11729/syltlx20180177
    [4]Wang Guolin, Zhou Yinjia, Jin Hua, Meng Songhe. Study on the influence of catalytic effect on the aerothermal environment by the flow-heat transfer coupling numerical analysis[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 13-19. DOI: 10.11729/syltlx20180159
    [5]Wang Guolin, Meng Songhe, Jin Hua. The validity analysis of ground simulation test for non-ablative thermal protection materials[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 79-87. DOI: 10.11729/syltlx20180122
    [6]Li Xingwei, Li Cong, Xu Chuanbao, Li Shengwen. Experimental research on the coupling effect of propeller slipstream and flat tail deep stall on aerodynamic characteristics of airplane[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1): 84-89. DOI: 10.11729/syltlx20170068
    [7]Sun Chenghong, Dai chin. The influence of the tip sails shape on the wing aerodynamics in ground effect[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(6): 10-17. DOI: 10.11729/syltlx20160054
    [8]Fang Yue, Zhou Zhiyu, Zhang Lianhe. Study on prediction of ground effect test data[J]. Journal of Experiments in Fluid Mechanics, 2015, (1): 60-65. DOI: 10.11729/syltlx20130120
    [9]YANG Jiong, LIANG Jian, LI Zheng-chu. Key technical research on developing moving belt ground proximity[J]. Journal of Experiments in Fluid Mechanics, 2008, 22(4): 68-71. DOI: 10.3969/j.issn.1672-9897.2008.04.015
    [10]Chen Wei-fang, SHI Yu-zhong, WU Qi-feng. A law of similitude for ballistic target ground testing[J]. Journal of Experiments in Fluid Mechanics, 2001, 15(1): 22-25. DOI: 10.3969/j.issn.1672-9897.2001.01.004
  • Cited by

    Periodical cited type(5)

    1. 高郭池,张波,全敬泽,尹崇,丁丽,姜裕标. 正常类飞机自然结冰试飞适航审定技术. 航空学报. 2024(01): 195-216 .
    2. 陈磊,王榆淞,张军,孔冰娜,朱程香. 飞机气动除冰系统试验研究. 南京航空航天大学学报. 2024(02): 300-306 .
    3. 李伟斌,郝云权,王建涛,周铸,肖中云. 直升机旋翼结冰影响及防/除冰方法综述. 航空动力学报. 2023(02): 257-268 .
    4. 苏娜. 基于F-P腔形式的圆柱形声学共鸣腔自动化特征长度测量模型研究. 自动化与仪器仪表. 2023(04): 25-28 .
    5. 冉林,熊建军,赵照,何苗. 周期控制律电加热控制系统设计与应用. 电气传动. 2021(14): 57-61 .

    Other cited types(7)

Catalog

    Article Metrics

    Article views (162) PDF downloads (6) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close