Citation: | ZHONG Fuyu, LE Jialing, TIAN Ye, YUE Maoxiong. Investigation of the combustion process in an ethylene-fueled scramjet combustor[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 34-43. DOI: 10.11729/syltlx20200093 |
[1] |
URZAY J. Supersonic combustion in air-breathing propulsion systems for hypersonic flight[J]. Annual Review of Fluid Mechanics, 2018, 50(1): 593-627. doi: 10.1146/annurev-fluid-122316-045217
|
[2] |
田野, 乐嘉陵, 杨顺华, 等. 氢燃料超燃燃烧室流场结构和火焰传播规律试验研究[J]. 实验流体力学, 2019, 33(1): 72-78. DOI: 10.11729/syltlx20180027
TIAN Y, LE J L, YANG S H, et al. Experimental study on flow structure and flame development in a hydrogen-fueled supersonic combustor[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(1): 72-78. doi: 10.11729/syltlx20180027
|
[3] |
吴戈, 李韵, 万明罡, 等. 平面激光诱导荧光技术在超声速燃烧火焰结构可视化中的应用[J]. 实验流体力学, 2020, 34(3): 70-77. DOI: 10.11729/syltlx20190168
WU G, LI Y, WAN M G, et al. Visualization of flame structure in supersonic combustion by Planar Laser Induced Fluorescence technique[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(3): 70-77. doi: 10.11729/syltlx20190168
|
[4] |
RUAN J L, DOMINGO P, RIBERT G. Analysis of combustion modes in a cavity based scramjet[J]. Combustion and Flame, 2020, 215: 238-251. doi: 10.1016/j.combustflame.2020.01.034
|
[5] |
GORDON R L, STÅRNER S H, MASRI A R, et al. Further characterisation of lifted hydrogen and methane flames issuing into a vitiated coflow[C]//Proc of the 5th Asia-Pacific Conference on Combustion. 2005.
|
[6] |
GORDON R L, MASRI A R, MASTORAKOS E. Simu-ltaneous Rayleigh temperature, OH- and CH2O-LIF imaging of methane jets in a vitiated coflow[J]. Combustion and Flame, 2008, 155(1-2): 181-195. doi: 10.1016/j.combustflame.2008.07.001
|
[7] |
MASTORAKOS E. Ignition of turbulent non-premixed flames[J]. Progress in Energy and Combustion Science, 2009, 35(1): 57-97. doi: 10.1016/j.pecs.2008.07.002
|
[8] |
张弯洲, 乐嘉陵, 杨顺华, 等. Ma4下超燃发动机乙烯点火及火焰传播过程试验研究[J]. 实验流体力学, 2016, 30(3): 40-46, 84. DOI: 10.11729/syltlx20150161
ZHANG W Z, LE J L, YANG S H, et al. Experimental research on ethylene ignition and flame propagation processes for scramjet at Ma4[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(3): 40-46, 84. doi: 10.11729/syltlx20150161
|
[9] |
BRIESCHENK S, O'BYRNE S, KLEINE H. Laser-induced plasma ignition studies in a model scramjet engine[J]. Combustion and Flame, 2013, 160(1): 145-148. doi: 10.1016/j.combustflame.2012.08.011
|
[10] |
BRIESCHENK S, O'BYRNE S, KLEINE H. Ignition charac-teristics of laser-ionized fuel injected into a hypersonic crossflow[J]. Combustion and Flame, 2014, 161(4): 1015-1025. doi: 10.1016/j.combustflame.2013.09.024
|
[11] |
KUMARAN K, BABU V. Investigation of the effect of chemistry models on the numerical predictions of the supersonic combustion of hydrogen[J]. Combustion and Flame, 2009, 156(4): 826-841. doi: 10.1016/j.combustflame.2009.01.008
|
[12] |
NAKAYA S, TSUE M, KONO M, et al. Effects of thermally cracked component of n-dodecane on supersonic combustion behaviors in a scramjet model combustor[J]. Combustion and Flame, 2015, 162(10): 3847-3853. doi: 10.1016/j.combustflame.2015.07.021
|
[13] |
何粲, 邢建文, 肖保国, 等. 矩形截面超燃发动机不同燃烧模态下的流场特征[J]. 实验流体力学, 2018, 32(4): 12-19. DOI: 10.11729/syltlx20180022
HE C, XING J W, XIAO B G, et al. Investigation on flow field characteristics of a rectangular scramjet in different combustion modes[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(4): 12-19. doi: 10.11729/syltlx20180022
|
[14] |
QIN Q Y, AGARWAL R, ZHANG X B. A novel method for flame stabilization in a strut-based scramjet combustor[J]. Combustion and Flame, 2019, 210: 292-301. doi: 10.1016/j.combustflame.2019.08.038
|
[15] |
FÖRSTER F J, DRÖSKE N C, BVHLER M N, et al. Analysis of flame characteristics in a scramjet combustor with staged fuel injection using common path focusing schlieren and flame visualization[J]. Combustion and Flame, 2016, 168: 204-215. doi: 10.1016/j.combustflame.2016.03.010
|
[16] |
AN B, YANG L C, WANG Z G, et al. Characteristics of laser ignition and spark discharge ignition in a cavity-based supersonic combustor[J]. Combustion and Flame, 2020, 212: 177-188. doi: 10.1016/j.combustflame.2019.10.030
|
[17] |
TIAN Y, YANG S H, LE J L, et al. Investigation of combustion process of a kerosene fueled combustor with air throttling[J]. Combustion and Flame, 2017, 179: 74-85. doi: 10.1016/j.combustflame.2017.01.021
|
[18] |
TIAN Y, XIAO B G, ZHANG S P, et al. Experimental and computational study on combustion performance of a kerosene fueled dual-mode scramjet engine[J]. Aerospace Science and Technology, 2015, 46: 451-458. doi: 10.1016/j.ast.2015.09.002
|
[19] |
TIAN Y, YANG S H, LE J L. Numerical study on effect of air throttling on combustion mode formation and transition in a dual-mode scramjet combustor[J]. Aerospace Science and Technology, 2016, 52: 173-180. doi: 10.1016/j.ast.2016.02.027
|
[20] |
钟富宇, 乐嘉陵, 韩亦宇, 等. 当量比对氢燃料超燃燃烧室流场结构和燃烧模态影响研究[J]. 推进技术, 2019, 40(2): 324-330. DOI: 10.13675/j.cnki.tjjs.170776
ZHONG F Y, LE J L, HAN Y Y, et al. Investigation for effects of equivalence ratio on flow structure and combustion mode in a hydrogen fueled scramjet combustor[J]. Journal of Propulsion Technology, 2019, 40(2): 324-330. doi: 10.13675/j.cnki.tjjs.170776
|
[1] | SUN Shu, ZHANG Wenmin, JIA Shangshuai. Analysis on the aerodynamic noise of the pantograph of high-speed train at 400 km/h[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(3): 91-98. DOI: 10.11729/syltlx20230029 |
[2] | WU Jifei, ZHOU Fangqi, XU Laiwu, YANG Ke, LIANG Jinmin. Evolution of high-speed cavity flow based on PIV technology[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(6): 34-41. DOI: 10.11729/syltlx20210144 |
[3] | CHEN Dawei, LIU Jiali, YAO Shuanbao, WANG Weibin. Preliminary study on system configuration of ultra high-speed maglev train aerodynamic problem in the low vacuum tube[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(3): 19-26. DOI: 10.11729/syltlx20220136 |
[4] | LI Yifan, LI Tian, ZHANG Jiye, ZHANG Weihua. Effect of deflector devices on the aerodynamic characteristics of high-speed maglev trains[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(1): 91-99. DOI: 10.11729/syltlx20220109 |
[5] | YANG Wenzhe, LIU Feng, WEI Mengjie, YAO Shuanbao, CHEN Dawei. Experimental investigation on tunnel pressure wave of high-speed train[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(1): 36-43. DOI: 10.11729/syltlx20220096 |
[6] | GAO Jianyong, ZHANG Jun, NI Zhangsong, ZHOU Peng, ZHU Yan, WANG Chengqiang, GAO Guangjun. The aerodynamic characteristics of roof-wing combination of a high-speed train[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(1): 29-35. DOI: 10.11729/syltlx20220053 |
[7] | DING Sansan, LIU Jiali, CHEN Dawei. Aerodynamic design of the 600 km/h high-speed maglev transportation system[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(1): 1-8. DOI: 10.11729/syltlx20220131 |
[8] | WANG Bin, LIANG Jie, WANG Pan, GU Zhenghua, GAI Wen. A Bernoulli sampling based image real-time compression method for high-speed camera[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(6): 52-57. DOI: 10.11729/syltlx20200052 |
[9] | Zhou Jian, Ou Ping, Liu Peiqing, Guo Hao. Numerical study of ground effects on high speed train aerodynamic drag[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(4): 26-31. DOI: 10.11729/syltlx20150124 |
[10] | Measuring particles motion at the exit zone in circulating fluidized bed boilers by high-speed video camera system[J]. Journal of Experiments in Fluid Mechanics, 2001, 15(3): 62-66. DOI: 10.3969/j.issn.1672-9897.2001.03.011 |