Liu Bing, He Guoqiang, Qin Fei. Experimental study on ignition process for ethylene high speed jet[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 24-27. DOI: 10.11729/syltlx20180003
Citation: Liu Bing, He Guoqiang, Qin Fei. Experimental study on ignition process for ethylene high speed jet[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 24-27. DOI: 10.11729/syltlx20180003

Experimental study on ignition process for ethylene high speed jet

More Information
  • Received Date: January 02, 2018
  • Revised Date: March 07, 2018
  • In order to investigate the ignition process with fuel-rich gas of scramjet combustor, a simplified burner with fuel-rich hot coflow and sonic nozzle jet was designed. Ignition process of sonic ethylene jet issuing into a coflow of hot exhaust products of a rich premixed ethylene/air flat flame was examined using the chemiluminescence. Three cases with the equivalence ratio of coflow varying from 1.4 to 1.6 and the injection pressure varying from 2atm to 3atm were examined. The results indicate that:(1) the ignition process of sonic ethylene jet in fuel-rich gas may be divided into four steps:(a) jet and coflow mixing; (b) strong chemical reactions between jet and surrounding air; (c) occurrence of extinction in the downstream of flame; (d) steady flame; (2) the equivalence ratio of coflow 1.4 was more effective than 1.6 for ignition process; (3) with the increase of jet velocity, flame luminosity is lowered due to incomplete burning in the higher speed steady flame.
  • [1]
    张弯洲, 乐嘉陵, 杨顺华, 等. Ma4下超燃发动机乙烯点火及火焰传播过程试验研究[J].实验流体力学, 2016, 30(3):40-46. http://www.syltlx.com/CN/abstract/abstract10932.shtml

    Zhang W Z, Le J L, Yang S H, et al. Experimental research on ethylene ignition and flame propagation processes for scramjet at Ma4[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(3):40-46. http://www.syltlx.com/CN/abstract/abstract10932.shtml
    [2]
    Kumaran K, Behera P R, Babu V. Numerical investigation of the supersonic combustion of kerosene in a strutbased combustor[J]. Journal of Propulsion and Power, 2010, 26(5):1084-1091. DOI: 10.2514/1.46965
    [3]
    Kumaran K, Babu V. Mixing and combustion characteristics of kerosene in a model supersonic combustor[J]. Journal of Propulsion and Power, 2009, 25(3):583-592. DOI: 10.2514/1.40140
    [4]
    Manna P, Behera R, Chakraborty D. Liquid-fueled strut-based scramjet combustor design:a computational fluid dynamics approach[J]. Journal of Propulsion and Power, 1971, 24(2):274-281. http://www.ijsrd.com/Article.php?manuscript=IJSRDV2I9028
    [5]
    Oldenhof E, Tummers M J, Veen E H V, et al. Ignition kernel formation and lift-off behaviour of jet-in-hot-coflow flames[J]. Combustion & Flame, 2010, 157(6):1167-1178. https://www.sciencedirect.com/science/article/pii/S0010218010000131
    [6]
    Oldenhof E, Tummers M J, Veen E H V, et al. Role of entrainment in the stabilisation of jet-in-hot-coflow flames[J]. Combustion & Flame, 2011, 158(8):1553-1563. https://www.sciencedirect.com/science/article/pii/S001021801000372X
    [7]
    Oldenhof E, Tummers M J, Veen E H V, et al. Transient response of the Delft jet-in-hot coflow flames[J]. Combustion & Flame, 2012, 159(2):697-706. https://www.sciencedirect.com/science/article/pii/S0010218011002343
    [8]
    Oldenhof E, Tummers M J, Veen E H V, et al. Conditional flow field statistics of jet-in-hot-coflow flames[J]. Combustion & Flame, 2013, 160(8):1428-1440. https://www.sciencedirect.com/science/article/pii/S0010218013000916
    [9]
    Gordon R L, Masri A R. Mastorakos E. Simultaneous Rayleigh temperature, OH-and CH2O-LIF imaging of methane jets in a vitiated coflow[J]. Combustion and Flame, 2008, 155(1-2):181-195. DOI: 10.1016/j.combustflame.2008.07.001
    [10]
    Masri A R. Heat release rate as represented by×and its role in autoignition[J]. Combustion Theory & Modelling, 2009, 13(4):645-670. http://adsabs.harvard.edu/abs/2009CTM....13..645G
    [11]
    沈雪豹, 叶桃红, 严野, 等.湍流射流火焰抬举高度的实验研究[J].工业加热, 2014, 43(6):6-10. http://www.cnki.com.cn/Article/CJFDTotal-GYJR201406004.htm

    Shen X B, Ye T H, Yan Y, et al. Studying of lifted height of jet flame in turbulent combustion by experiment[J]. Industrial Heating, 2014, 43(6):6-10. http://www.cnki.com.cn/Article/CJFDTotal-GYJR201406004.htm
    [12]
    闫小龙, 林其钊, 严野, 等.可控有损热伴流燃烧器的性能研究[J].工业加热, 2013, 42(5):4-6. http://www.cqvip.com/QK/93207A/201305/47787250.html

    Yan X L, Lin Q Z, Yan Y, et al. Design and resrarch on charcteristiics of controllable of a vitiated coflow combustor[J]. Industrial Heating, 2013, 42(5):4-6. http://www.cqvip.com/QK/93207A/201305/47787250.html
    [13]
    Cheng T S, Wehrmeyer J A, Pitz R W, et al. Raman measurement of mixing and finite-rate chemistry in a supersonic hydrogen-air diffusion flame[J]. Combustion & Flame, 1994, 99(1):157-173.
    [14]
    Weisgerber H, Martinuzzi R, Brummund U, et al. PIV measurements in a Mach 2 hydrogen-air supersonic combustion[C]. AIAA/Nal-Nasda-Isas International Space Planes and Hypersonic Systems and Technologies Conference, 2013.
    [15]
    张弯洲, 乐嘉陵, 杨顺华, 等.马赫数4下氢气自燃辅助乙烯点火实验研究[J].推进技术, 2013, 34(12):1628-1635. http://www.cnki.com.cn/Article/CJFDTotal-DJZD201505027.htm

    Zhang W Z, Le J L, Yang S H, et al. Experimental research on eth-ylene ignition with hydrogen self-ignition assistant at Mach 4[J]. Journal of Propulsion Technology, 2013, 34(12):1268-1635. http://www.cnki.com.cn/Article/CJFDTotal-DJZD201505027.htm
    [16]
    Ombrello T M, Carter C D, Tam C J, et al. Cavity ignition in supersonic flow by spark discharge and pulse detonation[J]. Proceedings of the Combustion Institute, 2015, 35(2):2101-2108. DOI: 10.1016/j.proci.2014.07.068
  • Related Articles

    [1]SUN Shu, ZHANG Wenmin, JIA Shangshuai. Analysis on the aerodynamic noise of the pantograph of high-speed train at 400 km/h[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(3): 91-98. DOI: 10.11729/syltlx20230029
    [2]WU Jifei, ZHOU Fangqi, XU Laiwu, YANG Ke, LIANG Jinmin. Evolution of high-speed cavity flow based on PIV technology[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(6): 34-41. DOI: 10.11729/syltlx20210144
    [3]CHEN Dawei, LIU Jiali, YAO Shuanbao, WANG Weibin. Preliminary study on system configuration of ultra high-speed maglev train aerodynamic problem in the low vacuum tube[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(3): 19-26. DOI: 10.11729/syltlx20220136
    [4]LI Yifan, LI Tian, ZHANG Jiye, ZHANG Weihua. Effect of deflector devices on the aerodynamic characteristics of high-speed maglev trains[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(1): 91-99. DOI: 10.11729/syltlx20220109
    [5]YANG Wenzhe, LIU Feng, WEI Mengjie, YAO Shuanbao, CHEN Dawei. Experimental investigation on tunnel pressure wave of high-speed train[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(1): 36-43. DOI: 10.11729/syltlx20220096
    [6]GAO Jianyong, ZHANG Jun, NI Zhangsong, ZHOU Peng, ZHU Yan, WANG Chengqiang, GAO Guangjun. The aerodynamic characteristics of roof-wing combination of a high-speed train[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(1): 29-35. DOI: 10.11729/syltlx20220053
    [7]DING Sansan, LIU Jiali, CHEN Dawei. Aerodynamic design of the 600 km/h high-speed maglev transportation system[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(1): 1-8. DOI: 10.11729/syltlx20220131
    [8]WANG Bin, LIANG Jie, WANG Pan, GU Zhenghua, GAI Wen. A Bernoulli sampling based image real-time compression method for high-speed camera[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(6): 52-57. DOI: 10.11729/syltlx20200052
    [9]Zhou Jian, Ou Ping, Liu Peiqing, Guo Hao. Numerical study of ground effects on high speed train aerodynamic drag[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(4): 26-31. DOI: 10.11729/syltlx20150124
    [10]Measuring particles motion at the exit zone in circulating fluidized bed boilers by high-speed video camera system[J]. Journal of Experiments in Fluid Mechanics, 2001, 15(3): 62-66. DOI: 10.3969/j.issn.1672-9897.2001.03.011

Catalog

    Article Metrics

    Article views (260) PDF downloads (9) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close