Citation: | Dong Hao, Liu Shicheng, Cheng Keming. Review of hypersonic boundary layer transition induced by roughness elements[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 1-15. DOI: 10.11729/syltlx20180167 |
[1] |
解少飞, 杨武兵, 沈清.高超声速转捩机理及应用的若干进展回顾[J].航空学报, 2015, 36(3):714-723. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201503002
Xie S F, Yang W B, Shen Q. Review of progresses in hypersonic boundary layer transition mechanism and its applications[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3):714-723. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201503002
|
[2] |
Maslov A A, Shipyluk A N, Bountin D A, et al. Mach 6 boundary-layer stability experiments on sharp and blunt cones[J]. Journal of Spacecraft and Rockets, 2006, 43(1):71-76. DOI: 10.2514/1.15246
|
[3] |
Schneider S P. Effects of roughness on hypersonic boundary-layer transition[J]. Journal of Spacecraft and Rockets, 2008, 45(2):193-209. DOI: 10.2514/1.29713
|
[4] |
Schneider S P. Summary of hypersonic boundary-layer transition experiments on blunt bodies with roughness[J]. Journal of Spacecraft and Rockets, 2008, 45(6):1090-1105. DOI: 10.2514/1.37431
|
[5] |
Reda D C. Review and synthesis of roughness-dominated transition correlations for reentry applications[J]. Journal of Spacecraft and Rockets, 2002, 39(2):161-167. DOI: 10.2514/2.3803
|
[6] |
Iyer P S, Mahesh K. High-speed boundary-layer transition induced by discrete roughness element[J]. Journal of Fluids Mechanics, 2013, 729:524-562. DOI: 10.1017/jfm.2013.311
|
[7] |
罗纪生.高超声速边界层的转捩及预测[J].航空学报, 2015, 36(1):357-372. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501028
Luo J S. Transition and prediction for hypersonic boundary layers[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):357-372. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501028
|
[8] |
陈坚强, 涂国华, 张毅锋, 等.高超声速边界层转捩研究现状与发展趋势[J].空气动力学学报, 2017, 35(3):311-337. DOI: 10.7638/kqdlxxb-2017.0030
Chen J Q, Tu G H, Zhang Y F, et al. Hypersonic boundary layer transition:what we know, where shall we go[J]. Acta Aerodynamica Sinica, 2017, 35(3):311-337. DOI: 10.7638/kqdlxxb-2017.0030
|
[9] |
Whitehead A H Jr. NASP aerodynamics[C]//Proc of the 1st National Aerospace Plane Conference. 1989.
|
[10] |
Berry S A, Horvath T J, Hollis B R, et al. X-33 hypersonic boundary-layer transition[J]. Journal of Spacecraft and Rockets, 2001, 38(5):646-657. DOI: 10.2514/2.3750
|
[11] |
Berry S A, Difulvio M, Kowalkowski M K. Forced boundary-layer transition on X-43(Hyper-X) in NASA LaRC 20-inch Mach 6 air tunnel[R]. NASA/TM-2000-210316.
|
[12] |
Berry S A, Daryabeigi K, Wurster K, et al. Boundary-layer transition on X-43A[J]. Journal of Spacecraft and Rockets, 2010, 47(6):922-934. DOI: 10.2514/1.45889
|
[13] |
Borg M P. Laminar instability and transition on the X-51A[D]. West Lafayette, Indiana: Purdue University, 2009.
|
[14] |
赵慧勇, 易淼荣.高超声速进气道强制转捩装置设计综述[J].空气动力学学报, 2014, 32(5):623-627. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201405009
Zhao H Y, Yi M R. Review of design for forced-transition trip of hypersonic inlet[J]. Acta Aerodynamica Sinica, 2014, 32(5):623-627. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201405009
|
[15] |
Fujii K. Experiment of the two-dimensional roughness effect on hypersonic boundary-layer transition[J]. Journal of Spacecraft and Rockets, 2006, 43(4):731-738. DOI: 10.2514/1.17860
|
[16] |
Tirtey S C, Chazot O, Walpot L. Characterization of hypersonic roughness-induced boundary-layer transition[J]. Experiments in Fluids, 2011, 50(2):407-418. DOI: 10.1007/s00348-010-0939-4
|
[17] |
Reda D C, Wilder M C, Prabhu D K. Transition experiments on blunt bodies with isolated roughness elements in hypersonic flight[J]. Journal of Spacecraft and Rockets, 2010, 47(5):828-835. DOI: 10.2514/1.49112
|
[18] |
Wheaton B M, Schneider S P. Hypersonic boundary-layer instabilities due to near-critical roughness[J]. Journal of Spacecraft and Rockets, 2014, 51(1):327-342. DOI: 10.2514/1.A32554
|
[19] |
Fiala A, Hillier R, Estruch-Samper D. Roughness-induced turbulent wedges in a hypersonic blunt-body boundary layer[J]. Journal of Fluid Mechanics, 2014, 754(9):208-231. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=FLM754FLMFLM754S0022112014003887h.xml
|
[20] |
Bernardini M, Pirozzoli S, Orlandi P, et al. Parameterization of boundary-layer transition induced by isolated roughness elements[J]. AIAA Journal, 2014, 52(10):2261-2269. DOI: 10.2514/1.J052842
|
[21] |
Borg M P, Schneider S P. Effect of freestream noise on roughness-induced transition for the X-51A forebody[J]. Journal of Spacecrafts and Rockets, 2008, 45(6):1106-1116. DOI: 10.2514/1.38005
|
[22] |
van Driest E R, McCauley W D. The effect of controlled three-dimensional roughness on boundary-layer transition at supersonic speeds[J]. Journal of the Aeronautical Sciences, 1960, 27(4):261-271. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=k0MKVxSMVJipaOihOV6oHTpEfE6tJMHMy3VKHNoh/h8=
|
[23] |
Wheaton B M, Bartkowicz M D, Subbareddy P K, et al. Roughness-induced instabilities at Mach 6: a combined numerical and experimental study[C]//Proc of the 41st AIAA Fluid Dynamics Conference and Exhibit. 2011.
|
[24] |
Zhou Y L, Zhao Y F, Xu D, et al. Numerical investigation of hypersonic flat-plate boundary layer transition mechanism induced by different roughness shapes[J]. Acta Astronautica, 2016, 127:209-218. DOI: 10.1016/j.actaastro.2016.05.027
|
[25] |
朱德华, 袁湘江, 杨武兵.粗糙元诱导的高超声速转捩机理及应用[J].航空学报, 2018, 39(1):68-77. http://d.old.wanfangdata.com.cn/Periodical/hkxb201801005
Zhu D H, Yuan X J, Yang W B. Mechanism of hypersonic transition induced by a roughness element and its application[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1):68-77. http://d.old.wanfangdata.com.cn/Periodical/hkxb201801005
|
[26] |
Whitehead A H Jr. Flow-field and drag characteristics of several boundary-layer tripping elements in hypersonic flow[R]. NASA TN D-5454, 1969.
|
[27] |
Duan Z W, Xiao Z X. Direct numerical simulation of geometrical parameter effects on the hypersonic ramp-induced transition[C]//Proc of the 7th AIAA Theoretical Fluid Mechanics Conference. 2014.
|
[28] |
Duan Z W, Xiao Z X, Song F. Direct numerical simulation of hypersonic transition induced by an isolated cylindrical roughness element[J]. Science China Physics, Mechanics and Astronomy, 2014, 57(12):2330-2345. DOI: 10.1007/s11433-014-5556-4
|
[29] |
Subbareddy P K, Bartkowicz M D, Candler G V. Direct numerical simulation of high-speed transition due to an isolated roughness element[J]. Journal of Fluid Mechanics, 2014, 748(3):848-878. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=FLM748FLMFLM748S0022112014002043h.xml
|
[30] |
Danehy P M, Bathel B, Ivey C, et al. NO PLIF study of hypersonic transition over a discrete hemispherical roughness element[C]//Proc of the 47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2009.
|
[31] |
Wheaton B M, Schneider S P. Roughness-induced instability in a hypersonic laminar boundary layer[J]. AIAA Journal, 2012, 50(6):1245-1256. DOI: 10.2514/1.J051199
|
[32] |
Ye Q Q, Schrijer F, Scarano F. Tomographic PIV measurement of hypersonic boundary layer transition past a micro-ramp[C]//Proc of the 47th AIAA Fluid Dynamics Conference. 2017.
|
[33] |
Tang Q, Zhu Y D, Chen X, et al. Development of second-mode instability in a Mach 6 flat plate boundary layer with two-dimensional roughness[J]. Physics of Fluid, 2015, 27(6):064105. DOI: 10.1063/1.4922389
|
[34] |
Zhao X H, Zhang Q H. Experimental and numerical study of coherent structures in a roughness induced transition boundary layer at Mach 5[J]. Physics of Fluid, 2018, 30:104102. DOI: 10.1063/1.5047258
|
[35] |
Jackson A P, Hillier R, Soltani S. Experimental and computational study of laminar cavity flows at hypersonic speeds[J]. Journal of Fluid Mechanics, 2001, 427:329-358. DOI: 10.1017/S0022112000002433
|
[36] |
Lawson S J, Barakos G N. Review of numerical simulations for high-speed, turbulent cavity flows[J]. Progress in Aerospace Science, 2011, 47(3):186-216. DOI: 10.1016/j.paerosci.2010.11.002
|
[37] |
Palmer G E, Alter S, Everhart J, et al. CFD validation for short and long cavity flow simulations[C]//Proc of the 39th AIAA Thermophysics Conference. 2007.
|
[38] |
Ohmichi Y, Suzuki K. Study on hypersonic flow over flat plate with channels[C]//Proc of the 29th AIAA Applied Aerodynamics Conference. 2011.
|
[39] |
Chang C L, Choudhari M M, Li F, et al. Effects of cavities and protuberances on transition over hypersonic vehicles[C]//Proc of the 41st AIAA Fluid Dynamics Conference and Exhibit. 2011.
|
[40] |
Xiao L, Xiao Z, Duan Z, et al. Improved-delayed-detached-eddy simulation of cavity-induced transition in hypersonic boundary layer[J]. International Journal of Heat and Fluid Flow, 2015, 51:138-150. DOI: 10.1016/j.ijheatfluidflow.2014.10.007
|
[41] |
Federov A V, Malmuth N D, Rasheed A, et al. Stabilization of hypersonic boundary layers by porous coatings[J]. AIAA Journal, 2001, 39(4):605-610. DOI: 10.2514/2.1382
|
[42] |
Fedorov A, Shiplyuk A, Maslov A, et al. Stabilization of a hypersonic boundary layer using an ultrasonically absorptive coating[J]. Journal of Fluid Mechanics, 2003, 479:99-124. DOI: 10.1017/S0022112002003440
|
[43] |
Fedorov A, Kozlov V, Shiplyuk A, et al. Stability of hypersonic boundary layer on porous wall with regular microstructure[J]. AIAA Journal, 2006, 44(8):1866-1871. DOI: 10.2514/1.21013
|
[44] |
Fedorov A. Transition and stability of high-speed boundary layers[J]. Annual Review of Fluid Mechanics, 2011, 43(1):79-95. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7c2ca832ca33f26c09114620f4202345
|
[45] |
Wagner A, Kuhn M, Schramm J M, et al. Experiments on passive hypersonic boundary layer control using ultrasonically absorptive carbon-carbon material with random microstructure[J]. Experiments in Fluids, 2013, 54:1606. DOI: 10.1007/s00348-013-1606-3
|
[46] |
Wagner A, Hannemann K, Wartemann V, et al. Hypersonic boundary-layer stabilization by means of ultrasonically absorptive carbon-carbon material, part 1: experimental results[C]//Proc of the 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2013.
|
[47] |
Willems S, Gulhan A. Damping of the second mode instability on a cone in hypersonic flow[C]//Proc of the 7th European Symposium on Aerothermodynamics. 2011.
|
[48] |
Wartemann V, Lüdeke H, Sandham N D. Numerical investigation of hypersonic boundary-layer stabilization by porous surfaces[J]. AIAA Journal, 2012, 50(6):1281-1290. DOI: 10.2514/1.J051355
|
[49] |
Lukashevich S V, Morozov S O, Shiplyuk A N. Experimental study of the effect of a passive porous coating on disturbances in a hypersonic boundary layer 2. Effect of the porous coating location[J]. Journal of Applied Mechanics and Technical Physics, 2016, 57(5):873-878. DOI: 10.1134/S002189441605014X
|
[50] |
Wang X W, Zhong X L. The stabilization of a hypersonic boundary layer using local section of porous coating[J]. Physics of Fluids, 2012, 24(3):034105. DOI: 10.1063/1.3694808
|
[51] |
Zhao R, Liu T, Wen C Y, et al. Theoretical modeling and optimization of porous coating for hypersonic laminar flow control[J]. AIAA Journal, 2018, 56(8):2942-2946. DOI: 10.2514/1.J057272
|
[52] |
Reda D C, Wilder M C, Bogdanoff D W, et al. Transition experiments on blunt bodies with distributed roughness in hypersonic free flight[J]. Journal of Spacecraft and Rockets, 2008, 45(2):210-215. DOI: 10.2514/1.30288
|
[53] |
Reda D C, Wilder M C, Prabhu D K. Transition experiments on slightly blunted cones with distributed roughness in hypersonic flight[J]. AIAA Journal, 2012, 50(10):2248-2254. DOI: 10.2514/1.J051616
|
[54] |
Reda D C, Wilder M C, Prabhu D K. Transition experiments on blunt cones with distributed roughness in hypersonic flight[J]. Journal of Spacecraft and Rockets, 2013, 50(3):504-508. DOI: 10.2514/1.A32426
|
[55] |
Wilder M C, Reda D C, Prabhu D K. Effects of distributed surface roughness on turbulent heat transfer augmentation measured in hypersonic free flight[C]//Proc of the 52nd AIAA Aerospace Sciences Meeting. 2014.
|
[56] |
Wilder M C, Reda D C, Prabhu D K. Transition experiments on blunt bodies with distributed roughness in hypersonic free flight in carbon dioxide[C]//Proc of the 53rd AIAA Aerospace Sciences Meeting. 2015.
|
[57] |
Irimpan K J, Menezes V, Srinivasan K, et al. Nose-tip transition control by surface roughness on a hypersonic sphere[J]. Journal of Flow Control, Measurement & Visualization, 2018, 6:125-135. http://www.scirp.org/journal/PaperInformation.aspx?PaperID=85742
|
[58] |
Giovanni A D, Stemmer C. Cross-flow-type breakdown induced by distributed roughness in the boundary layer of a hypersonic capsule configuration[J]. Journal of Fluid Mechanics, 2018, 856:470-503. DOI: 10.1017/jfm.2018.706
|
[59] |
张存波, 罗纪生, 高军.分布式粗糙度对马赫数为4.5的平板边界层稳定性的影响[J].航空动力学报, 2016, 31(5):1234-1241. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201605027
Zhang C B, Luo J S, Gao J. Effect of distributed roughness on Mach 4.5 boundary-layer transition[J]. Journal of Aerospace Power, 2016, 31(5):1234-1241. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201605027
|
[60] |
江贤洋, 李存标.高超声速边界层感受性研究综述[J].实验流体力学, 2017, 31(2):1-11. http://www.syltlx.com/CN/abstract/abstract11004.shtml
Jiang X Y, Li C B. Review of research on the receptivity of hypersonic boundary layer[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2):1-11. http://www.syltlx.com/CN/abstract/abstract11004.shtml
|
[61] |
Mack L M. Boundary-layer linear stability theory[R]. AGARD Report 709: Special Course on Stability and Transition of Laminar Flow, 1984.
|
[62] |
Fedorov A. Transition and stability of high-speed boundary layers[J]. Annual Review of Fluid Mechanics, 2011, 43:79-95. DOI: 10.1146/annurev-fluid-122109-160750
|
[63] |
Morkovin M V. Critical evaluation of transition from laminar to turbulent shear layers with emphasis on hypersonically traveling bodies[R]. AFFDL-TR-68-149, 1969.
|
[64] |
周恒, 苏彩虹, 张永明.超声速/高超声速边界层的转捩机理及预测[M].北京:科学出版社, 2015.
Zhou H, Su C H, Zhang Y M. Transition mechanism and predication of supersonic/hypersonic boundary layer[M]. Beijing:Science Press, 2015.
|
[65] |
Morkovin M V. On the many faces of transition[M]//Well C S. Viscous drag reduction. New York: Plenum Press, 1969: 1-31.
|
[66] |
Saric W S, Reed H L, Kerschen E J. Boundary-layer receptivity to freestream disturbances[J]. Annu Review of Fluid Mechanics, 2002, 34:291-391. DOI: 10.1146/annurev.fluid.34.082701.161921
|
[67] |
Fedorov A V, Khokhlov A P. Receptivity of hypersonic boundary layer to wall disturbances[J]. Theoretical and Computational Fluid Dynamics, 2002, 15(4):231-254. DOI: 10.1007/s001620100052
|
[68] |
Zhong X L, Wang X W. Direct numerical simulation on the receptivity, instability, and transition of hypersonic boundary layers[J]. Annual Review of Fluid Mechanics, 2012, 44:527-561. DOI: 10.1146/annurev-fluid-120710-101208
|
[69] |
Kuester M S, White E B. Roughness receptivity and shielding in a flat plate boundary layer[J]. Journal of Fluid Mechanics, 2015, 777:430-460. DOI: 10.1017/jfm.2015.267
|
[70] |
Balakumar P. Boundary layer receptivity due to roughness and freestream sound for supersonic flows over axisymmetric cones[C]//Proc of the 38th Fluid Dynamics Conference and Exhibit. 2008.
|
[71] |
Iyer P S, Muppidi S, Mahesh K. Roughness-induced transition in high speed flows[C]//Proc of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2011.
|
[72] |
Wang X W, Zhong X L. Receptivity of a hypersonic flat-plate boundary layer to three-dimensional surface roughness[J]. Journal of Spacecraft and Rockets, 2008, 45(6):1165-1175. DOI: 10.2514/1.37766
|
[73] |
Mistry V I, Page G J, McGuirk J J. Simulation of receptivity and induced transition from discrete roughness elements[J]. Flow, Turbulence and Combustion, 2015, 95(2-3):301-334. DOI: 10.1007/s10494-015-9636-y
|
[74] |
Tang Q, Zhu Y D, Chen X, et al. Development of second-mode instability in a Mach 6 flat plate boundary layer with two-dimensional roughness[J]. Physics of Fluids, 2015, 27(6):064105. DOI: 10.1063/1.4922389
|
[75] |
Qin F F, Wu X S. Response and receptivity of the hypersonic boundary layer past a wedge to free-stream acoustic, vertical and entropy disturbances[J]. Journal of Fluid Mechanics, 2016, 797:874-915. DOI: 10.1017/jfm.2016.287
|
[76] |
Tempelmann D, Schrader L U, Hanifi A, et al. Swept wing boundary-layer receptivity to localized surface roughness[J]. Journal of Fluid Mechanics, 2012, 717:516-544. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c27081df7e589a304bd5450a1e7ade07
|
[77] |
Fedorov A V, Tumin A. Initial-value problem for hypersonic boundary-layer flows[J]. AIAA Journal, 2003, 41(3):379-389. DOI: 10.2514/2.1988
|
[78] |
刘向宏, 赖光伟, 吴杰.高超声速边界层转捩实验综述[J].空气动力学学报, 2018, 36(2):196-211. DOI: 10.7638/kqdlxxb-2018.0017
Liu X H, Lai G W, Wu J. Boundary-layer transition experiments in hypersonic flows[J]. Acta Aerodynamica Sinica, 2018, 36(2):196-211. DOI: 10.7638/kqdlxxb-2018.0017
|
[79] |
Maslov A A, Shiplyuk A N, Sidorenko A A, et al. Leading-edge receptivity of a hypersonic boundary layer on a flat plate[J]. Journal of Fluid Mechanics, 2001, 426:73-94. DOI: 10.1017/S0022112000002147
|
[80] |
Lee C B, Chen S Y. A review of recent progress in the study of transition in hypersonic boundary layer[J]. National Science Review, 2018, 52:4993540. DOI: 10.1093/nsr/nwy052
|
[81] |
Wang X W, Zhong X L. Receptivity of a hypersonic flat-plate boundary layer to three-dimensional surface roughness[J]. Journal of Spacecraft and Rockets, 2008, 45(6):1165-1175. DOI: 10.2514/1.37766
|
[82] |
Fong K D, Wang X W, Zhong X L. Numerical simulation of roughness effect on the stability of a hypersonic boundary layer[J]. Computers & Fluids, 2014, 96:350-367. http://www.sciencedirect.com/science/article/pii/S0045793014000164
|
[83] |
Duan L, Wang X W, Zhong X L. A high-order cut-cell method for numerical simulation of hypersonic boundary-layer instability with surface roughness[J]. Journal of Computational Physics, 2010, 229(19):7207-7237. DOI: 10.1016/j.jcp.2010.06.008
|
[84] |
Duan L, Wang X W, Zhong X L. Stabilization of a Mach 5.92 boundary layer by two-dimensional finite-height roughness[J]. AIAA Journal, 2013, 51(1):266-270. DOI: 10.2514/1.J051643
|
[85] |
Duan L, Zhong X L. A high-order cut-cell method for numerical simulation of three-dimensional hypersonic boundary-layer transition with finite surface roughness[C]//Proc of the 48th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2010.
|
[86] |
Balakumar P. Receptivity of hypersonic boundary layers to distributed roughness and acoustic disturbances[C]//Proc of the 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2013.
|
[87] |
Fong K D, Wang X W, Huang Y, et al. Second mode suppression in hypersonic boundary layer by roughness:design and experiments[J]. AIAA Journal, 2015, 53(10):3138-3143. DOI: 10.2514/1.J054100
|
[88] |
Moyes A J, Kocian T S, Mullen D, et al. Effects of initial disturbance amplitude on hypersonic crossflow instability[C]//Proc of AIAA Aerospace Sciences Meeting. 2018.
|
[89] |
Reed H L, Perez E, Kuehl J, et al. Verification and validation issues in hypersonic stability and transition prediction[J]. Journal of Spacecraft and Rockets, 2015, 52(1):29-37. DOI: 10.2514/1.A32825
|
[90] |
Bippes H. Basic experiments on transition in three-dimensional boundary layers dominated by crossflow instability[J]. Progress of Aerospace Science, 1999, 35(4):363-412. DOI: 10.1016/S0376-0421(99)00002-0
|
[91] |
Malik M R, Li F, Chang C L. Crossflow disturbances in three-dimensional boundary layers:nonlinear development, wave interaction and secondary instability[J]. Journal of Fluid Mechanics, 1994, 268:1-36. DOI: 10.1017/S0022112094001242
|
[92] |
Malik M R, Li F, Choudhari M M, et al. Secondary instability of crossflow vortices and swept-wing boundary-layer transition[J]. Journal of Fluid Mechanics, 1999, 399:85-115. DOI: 10.1017/S0022112099006291
|
[93] |
Chernoray V G, Dovgal A V, Kozlov V V, et al. Experiments on secondary instability of streamwise vortices in a swept-wing boundary layer[J]. Journal of Fluid Mechanics, 2005, 534:295-325. DOI: 10.1017/S0022112005004386
|
[94] |
White E B, Saric W S. Secondary instability of crossflow vortices[J]. Journal of Fluid Mechanics, 2005, 525:275-308. DOI: 10.1017/S002211200400268X
|
[95] |
赵耕夫, 徐立.高速三维边界层的横流不稳定性[J].力学学报, 1998, 30(5):521-530. DOI: 10.3321/j.issn:0459-1879.1998.05.002
Zhao G F, Xu L. Crossflows instability of high speed three-dimensional boundary layer[J]. Acta Mechanic Sinica, 1998, 30(5):521-530. DOI: 10.3321/j.issn:0459-1879.1998.05.002
|
[96] |
徐国亮, 符松.可压缩横流失稳及其控制[J].力学进展, 2012, 42(3):262-273. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201201673501
Xu G L, Fu S. The instability and control of compressible cross flows[J]. Advances in Mechanics, 2012, 42(3):262-273. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201201673501
|
[97] |
Reed H L, Saric W S. Stability of three-dimensional boundary layers[J]. Annual Review of Fluid Mechanics, 1989, 21:235-284. DOI: 10.1146/annurev.fl.21.010189.001315
|
[98] |
Wassermann P, Kloker M. Mechanisms and passive control of crossflow-vortex-induced transition in three-dimensional boundary layer[J]. Journal of Fluid Mechanics, 2002, 456:49-84. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4f2b0a566fd8608af84334df49d6b986
|
[99] |
Bonfigli G, Kloker M. Secondary instability of crossflow vortices:validation of the stability theory by direct numerical simulation[J]. Journal of Fluid Mechanics, 2007, 583:229-272. DOI: 10.1017/S0022112007006179
|
[100] |
Saric W S, Reed H L, Kerschen E J. Boundary-layer receptivity to freestream disturbances[J]. Annual Review of Fluid Mechanics, 2002, 34:291-319. DOI: 10.1146/annurev.fluid.34.082701.161921
|
[101] |
Saric W S, Carrillo R B Jr, Reibert M S. Leading-edge roughness as a transition control mechanism[C]//Proc of the 36th AIAA Aerospace Sciences Meeting and Exhibit. 1998.
|
[102] |
Radeztsky R H Jr, Reibert M S, Saric W S. Effect of isolated micron-sized roughness on transition in swept-wing flows[J]. AIAA Journal, 1999, 37(11):1370-1377. DOI: 10.2514/2.635
|
[103] |
Saric W S, Reed H L, White E B. Stability and transition of three-dimensional boundary layers[J]. Annual Review of Fluid Mechanics, 2003, 35:413-440. DOI: 10.1146/annurev.fluid.35.101101.161045
|
[104] |
Kocian T S, Moyes A J, Reed H L, et al. Hypersonic crossflow instability[C]//Proc of the AIAA Aerospace Sciences Meeting. 2018.
|
[105] |
Craig S A, Saric W S. Crossflow instability in a hypersonic boundary layer[J]. Journal of Fluid Mechanics, 2016, 808:224-244. DOI: 10.1017/jfm.2016.643
|
[106] |
Schuele C Y, Corke T C, Matlis E. Control of stationary cross-flow modes in a Mach 3.5 boundary layer using patterned passive and active roughness[J]. Journal of Fluid Mechanics, 2013, 718:5-38. DOI: 10.1017/jfm.2012.579
|
[107] |
Corke T, Arndt A, Matlis E, et al. Control of stationary cross-flow modes in a Mach 6 boundary layer using patterned roughness[J]. Journal of Fluid Mechanics, 2018, 856:822-849. DOI: 10.1017/jfm.2018.636
|
[108] |
Swanson E O, Schneider S P. Boundary-layer transition on cones at angle of attack in a Mach-6 Quiet Tunnel[C]//Proc of the 48th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2010.
|
[109] |
van den Kroonenberg A, Radespiel R, Candler G, et al. Infrared measurements of boundary-layer transition on an inclined cone at Mach 6[C]//Proc of the 48th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2010.
|
[110] |
Chynoweth B C, Ward C A C, Greenwood R T, et al. Measuring transition and instabilities in a Mach 6 hypersonic quiet wind tunnel[C]//Proc of the 44th AIAA Fluid Dynamics Conference. 2014.
|
[111] |
Zhang C H, Tang Q, Lee C B. Hypersonic boundary-layer transition on a flared cone[J]. Acta Mechanica Sinica, 2013, 29(1):48-54. DOI: 10.1007/s10409-013-0009-2
|
[112] |
Danehy P M, Ivey C B, Inman J A, et al. High speed PLIF imaging of hypersonic transition over discrete cylindrical roughness element[C]//Proc of the 48th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2010.
|
[113] |
易仕和, 田立丰, 赵玉新.基于NPLS技术的可压缩湍流机理实验研究新进展[J].力学进展, 2011, 41(4):379-390. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CAS201303040000629823
Yi S H, Tian L F, Zhao Y X. The new advance of the experimental research on compressible turbulence based on the NPLS technique[J]. Advances in Mechanics, 2011, 41(4):379-390. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CAS201303040000629823
|
[114] |
Driver D M. Application of oil-film interferometry skin-friction measurement to large wind tunnels[J]. Experiments in Fluids, 2003, 34(6):717-725. DOI: 10.1007/s00348-003-0613-1
|
[115] |
Pailhas G, Barricau P, Touvet Y, et al. Friction measurement in zero and adverse pressure gradient boundary layer using oil droplet interferometric method[J]. Experiment in Fluids, 2009, 47(2):195-207. DOI: 10.1007/s00348-009-0650-5
|
[116] |
Naughton J W, Schabron B, Hind M D, et al. Improved wall shear stress measurements on a supersonic microjet impingement surface[C]//Proc of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2011.
|
[117] |
董昊, 耿玺, 陆纪椿, 等.翼型边界层转捩热/油膜及红外测量技术的对比[J].南京航空航天大学学报, 2013, 45(6):792-796. DOI: 10.3969/j.issn.1005-2615.2013.06.009
Dong H, Geng X, Lu J C, et al. Comparative investigation on hot film, oil film and infrared measurement techniques of airfoil boundary layer transition[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2013, 45(6):792-796. DOI: 10.3969/j.issn.1005-2615.2013.06.009
|
[118] |
Dong H, Liu S C, Geng X, et al. A note on flow characterization of the FX63-137 airfoil at low Reynolds number using oil-film interferometry technique[J]. Physics of Fluid, 2018, 30(10):101701. DOI: 10.1063/1.5052233
|
[119] |
董昊, 史志伟, 陆纪椿, 等.高速边界层转捩的油膜干涉测量技术研究[C]//第五届近代实验空气动力学会议论文集. 2015.
Dong H, Shi Z W, Lu J C, et al. Investigation of oil film interferometry technology on high speed boundary layer transition[C]//Proc of the 5th Modern Experimental Aerodynamics Conference. 2015.
|
[120] |
Dong H, Liu S C, Geng X, et al. Influence of distributed roughness elements on boundary layer transition for NACA0012 airfoil[J]. Modern Physics Letters B, 2018, 32(29):1850349. DOI: 10.1142/S0217984918503499
|
[121] |
董昊, 刘是成, 杨鲤铭, 等.离散式粗糙元诱导翼型边界层转捩的数值和实验研究[J].南京航空航天大学学报, 2018, 50(6):807-814. http://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201806011.htm
Dong H, Liu S C, Yang L M, et al. Numerical simulation and experimental investigation on airfoil boundary layer transition induced by discrete roughness elements[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2018, 50(6):807-814. http://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201806011.htm
|
[122] |
Dong H, Wang C P, Cheng K M. Experimental and numerical investigation of hypersonic jaws inlet[J]. Modern Physics Letters B, 2010, 24(13):1409-1412. DOI: 10.1142/S0217984910023748
|
[123] |
Wagner A, Schülein E, Petervari R, et al. Combined free-stream disturbance measurements and receptivity studies in hypersonic wind tunnels by means of a slender wedge probe and direct numerical simulation[J]. Journal of Fluid Mechanics, 2018, 842:495-531. DOI: 10.1017/jfm.2018.132
|
[124] |
朱志斌, 袁湘江, 陈林.高阶紧致格式并行分区算法[J].计算力学学报, 2015, 32(6):825-830. http://d.old.wanfangdata.com.cn/Periodical/jslxxb201506018
Zhu Z B, Yuan X J, Chen L. Zone decomposition parallel algorithm of high order compact scheme[J]. Chinese Journal of Computational Mechanics, 2015, 32(6):825-830. http://d.old.wanfangdata.com.cn/Periodical/jslxxb201506018
|
[1] | WANG Yifan, QIN Qihao, GUAN Ruiqing, XU Jinglei. Experimental study and statistical analysis of flow field pulsation of spiked cylinder[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(6): 30-37. DOI: 10.11729/syltlx20220078 |
[2] | Liu Richao, Le Jialing, Chen Liujun, Yang Shunhua, Song Wenyan. Experimental and numerical study on spray atomization in a double-swirler combustor[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(5): 24-31, 45. DOI: 10.11729/syltlx20170093 |
[3] | Kong Shangfeng, Feng Feng, Deng Hanyu. Breakup of a kerosene droplet at high Weber numbers[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(1): 20-25. DOI: 10.11729/syltlx20160106 |
[4] | Liao Bin, Zhang Guifu, Wang Luhai, Zhu Yujian, Yang Jiming. Deformation and breakup behaviors of a drop in ambient liquid under impact[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(5): 9-16. DOI: 10.11729/syltlx20160029 |
[5] | LIU Zhi-rong, ZHU Rui. Dual wingtips vortexes Rayleigh-Ludwieg instability experimental research[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(2): 24-30. DOI: 10.3969/j.issn.1672-9897.2013.02.005 |
[6] | HUANG Wen-bin, ZOU Li-yong, LIU Jin-hong, TAN Duo-wang, ZHANG Guang-sheng. Effects of initial perturbations on Rayleigh-Taylor instability growth at gas-liquid interface[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(3): 39-41,66. DOI: 10.3969/j.issn.1672-9897.2010.03.008 |
[7] | YANG Lei, HAN Zhao-yuan, HUANG Zhong-wei. Experimental study on breakup and atomization of axisymmetrical dissemination of liquid[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(2): 50-55. DOI: 10.3969/j.issn.1672-9897.2007.02.011 |
[8] | ZHUO Qi-wei, SHI Hong-hui. Experimental study of Richtmyer-Meshkov instability at a gas/liquid interface in a shock tube[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(1): 25-30. DOI: 10.3969/j.issn.1672-9897.2007.01.005 |
[9] | CAI Qing-jun, HAN Zhao-yuan, WAN Qun, ZHANG Shou-qi. An investigation of later period of primary breakup in axisymmetric dissemination of liquid ring[J]. Journal of Experiments in Fluid Mechanics, 2000, 14(1): 57-62. DOI: 10.3969/j.issn.1672-9897.2000.01.007 |
[10] | Cai Qingjun, Han Zhaoyuan, Wan Qun, Zhang Shouqi. An Investigation of Basic Behaviour of Atomization[1〗Region Formed by Secondary Breakup of Liquid Ring[J]. Journal of Experiments in Fluid Mechanics, 1999, 13(2): 22-29. DOI: 10.3969/j.issn.1672-9897.1999.02.004 |