Citation: | ZHU C, XU G L, ZHANG C J, et al. Experimental investigation of crossflow instability upon a 6 degree hypersonic sharp cone model with rough surface[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20240011. |
Cross flow instability is one of the dominant modes of hypersonic boundary layer transition in real flight. However, the mechanism of hypersonic boundary layer transition induced by cross flow instability is still out of understanding. In this work we carried out the hypersonic instability experiment on a 6 degree hypersonic sharp cone model with rough surface using high-frequency pressure sensors, infrared camera, and hot-wire anemometry. The evolution of instability waves along the streamwise direction was obtained for different circumferential angles, and the development of low-frequency instability waves across the hypersonic boundary layer was also characterized. The results denote that the low-frequency instability waves are travelling cross-flow instability, while the high-frequency instability waves are speculated to be the secondary instability induced by the stationary cross-flow instability.
[1] |
陈坚强, 袁先旭, 涂国华, 等. 高超声速边界层转捩的几点认识[J]. 中国科学: 物理学 力学 天文学, 2019, 49(11): 125-138.
CHEN J Q, YUAN X X, TU G H, et al. Recent progresses on hypersonic boundary-layer transition[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2019, 49(11): 125-138. doi: 10.1360/SSPMA-2019-0071
|
[2] |
LEE C B, CHEN S Y. Recent progress in the study of transition in the hypersonic boundary layer[J]. National Science Review, 2019, 6(1): 155–170. doi: 10.1093/nsr/nwy052
|
[3] |
FEDOROV A. Transition and stability of high-speed boundary layers[J]. Annual Review of Fluid Mechanics, 2011, 43: 79–95. doi: 10.1146/annurev-fluid-122109-160750
|
[4] |
朱广生, 段毅, 姚世勇, 等. 跨流域高速飞行器气动设计研究现状及思考[J]. 宇航学报, 2023, 44(3): 358–367. DOI: 10.3873/j.issn.1000-1328.2023.03.005
ZHU G S, DUAN Y, YAO S Y, et al. Research status and consideration on aerodynamic design of hypersonic flight vehicle covering various flow regimes[J]. Journal of Astronautics, 2023, 44(3): 358–367. doi: 10.3873/j.issn.1000-1328.2023.03.005
|
[5] |
段毅, 姚世勇, 李思怡, 等. 高超声速边界层转捩的若干问题及工程应用研究进展综述[J]. 空气动力学学报, 2020, 38(2): 391–403. DOI: 10.7638/kqdlxxb-2020.0041
DUAN Y, YAO S Y, LI S Y, et al. Review of progress in some issues and engineering application of hypersonic boundary layer transition[J]. Acta Aerodynamica Sinica, 2020, 38(2): 391–403. doi: 10.7638/kqdlxxb-2020.0041
|
[6] |
陈坚强, 涂国华, 张毅锋, 等. 高超声速边界层转捩研究现状与发展趋势[J]. 空气动力学学报, 2017, 35(3): 311–337. DOI: 10.7638/kqdlxxb-2017.0030
CHEN J Q, TU G H, ZHANG Y F, et al. Hypersnonic boundary layer transition: what we know, where shall we go[J]. Acta Aerodynamica Sinica, 2017, 35(3): 311–337. doi: 10.7638/kqdlxxb-2017.0030
|
[7] |
WU J, RADESPIEL R. Investigation of instability waves in a Mach 3 laminar boundary layer[J]. AIAA Journal, 2015, 53(12): 3712–3725. doi: 10.2514/1.j054040
|
[8] |
CORKE T C, CAVALIERI D A, MATLIS E. Boundary-layer instability on sharp cone at Mach 3.5 with controlled input[J]. AIAA Journal, 2002, 40: 1015–1018. doi: 10.2514/3.15156
|
[9] |
GRAZIOSI P, BROWN G L. Experiments on stability and transition at Mach 3[J]. Journal of Fluid Mechanics, 2002, 472: 83–124. doi: 10.1017/s0022112002002094
|
[10] |
STETSON K F. Hypersonic boundary-layer transition[M]//Advances in Hypersonics. Boston, MA: Birkhäuser Boston, 1992: 324-417. doi: 10.1007/978-1-4612-0379-7_7
|
[11] |
MUÑOZ F, HEITMANN D, RADESPIEL R. Instability modes in boundary layers of an inclined cone at Mach 6[J]. Journal of Spacecraft and Rockets, 2014, 51(2): 442–454. doi: 10.2514/1.a32564
|
[12] |
ZHU W K, GU D W, SI W F, et al. Instability evolution in the hypersonic boundary layer over a wavy wall[J]. Journal of Fluid Mechanics, 2022, 943: A16. doi: 10.1017/jfm.2022.437
|
[13] |
ZHU W K, SHI M T, ZHU Y D, et al. Experimental study of hypersonic boundary layer transition on a permeable wall of a flared cone[J]. Physics of Fluids, 2020, 32(1): 011701. doi: 10.1063/1.5139546
|
[14] |
TANG Q, ZHU Y D, CHEN X, et al. Development of second-mode instability in a Mach 6 flat plate boundary layer with two-dimensional roughness[J]. Physics of Fluids, 2015, 27(6): 064105. doi: 10.1063/1.4922389
|
[15] |
成江逸, 司马学昊, 吴杰. 粗糙元对零攻角尖锥模型高超声速边界层转捩的影响研究[J]. 南京航空航天大学学报, 2022, 54(4): 573–582. DOI: 10.16356/j.1005-2615.2022.04.004
CHENG J Y, SIMA X H, WU J. Influence of roughness element on hypersonic boundary layer transition of cone model at zero angle of attack[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2022, 54(4): 573–582. doi: 10.16356/j.1005-2615.2022.04.004
|
[16] |
GUI Y T, WANG W Z, ZHAO R, et al. Hypersonic boundary-layer instability characteristics on sharp cone with porous coating[J]. AIAA Journal, 2022, 60(7): 4453–4461. doi: 10.2514/1.j060930
|
[17] |
ZHAO J Q, SIMA X H, XIONG Y D, et al. Impact of wavy wall surface on hypersonic boundary-layer instability of sharp cone model[J]. AIAA Journal, 2022, 60(11): 6203–6213. doi: 10.2514/1.j062035
|
[18] |
MASUTTI D. Ground testing investigation of hypersonic transition phenomena for a re-entry vehicle[D]. Delft, The Netherlands: Delft University of Technology, 2013. doi: 10.4233/UUID:D3E4A54A-9052-4A2C-BF51-53C0C332FE40
|
[19] |
HOFFERTH J, SARIC W, KUEHL J, et al. Boundary-layer instability and transition on a flared cone in a Mach 6 quiet wind tunnel[J]. International Journal of Engineering Systems Modelling and Simulation, 2013, 5(1/2/3): 109. doi: 10.1504/ijesms.2013.052386
|
[20] |
刘向宏, 赖光伟, 吴杰. 高超声速边界层转捩实验综述[J]. 空气动力学学报, 2018, 36(2): 196–212. DOI: 10.7638/kqdlxxb-2018.0017
LIU X H, LAI G W, WU J. Boundary-layer transition experiments in hypersonic flow[J]. Acta Aerodynamica Sinica, 2018, 36(2): 196–212. doi: 10.7638/kqdlxxb-2018.0017
|
[21] |
刘姝怡, 陈坚强, 袁先旭, 等. 6°攻角尖锥高超声速边界层高频不稳定波实验研究[J]. 实验流体力学, 2021, 35(6): 1–7. DOI: 10.11729/syltlx20210059
LIU S Y, CHEN J Q, YUAN X X, et al. Experimental study on high frequency unstable waves in hypersonic boundary layer with sharp cone at 6° angle of attack[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(6): 1–7. doi: 10.11729/syltlx20210059
|
[22] |
刘是成, 姜应磊, 董昊. 高超声速圆锥边界层不稳定性及转捩实验研究[J]. 实验流体力学, 2022, 36(2): 122–130. DOI: 10.11729/syltlx20210136
LIU S C, JIANG Y L, DONG H. Experimental study on instability and transition over hypersonic boundary layer on a straight cone[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(2): 122–130. doi: 10.11729/syltlx20210136
|
[23] |
CORKE T, ARNDT A, MATLIS E, et al. Control of stationary cross-flow modes in a Mach 6 boundary layer using patterned roughness[J]. Journal of Fluid Mechanics, 2018, 856: 822–849. doi: 10.1017/jfm.2018.636
|
[24] |
CRAIG S A, SARIC W S. Crossflow instability in a hypersonic boundary layer[J]. Journal of Fluid Mechanics, 2016, 808: 224–244. doi: 10.1017/jfm.2016.643
|
[25] |
WARD C A C. Crossflow instability and transition on a circular cone at angle of attack in a Mach-6 quiet tunnel[D]. West Lafayette: Purdue University, 2014.
|
[26] |
BIPPES H, LERCHE T, BIPPES H, et al. Transition prediction in three-dimensional boundary-layer flows unstable to crossflow instability[C]//Proc of the 28th Fluid Dynamics Conference. 1997. doi: 10.2514/6.1997-1906
|
[27] |
DEYHLE H, BIPPES H. Disturbance growth in an unstable three-dimensional boundary layer and its dependence on environmental conditions[J]. Journal of Fluid Mechanics, 1996, 316: 73–113. doi: 10.1017/s0022112096000456
|
[28] |
SARIC W S, CARPENTER A L, REED H L. Passive control of transition in three-dimensional boundary layers, with emphasis on discrete roughness elements[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011, 369(1940): 1352–1364. doi: 10.1098/rsta.2010.0368
|
[29] |
SWANSON E, SCHNEIDER S. Boundary-layer transition on cones at angle of attack in a Mach-6 quiet tunnel[C]//Proc of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 2010. doi: 10.2514/6.2010-1062
|
[30] |
WARD C A C. Hypersonic crossflow instability and transition on a circular cone at angle of attack[D]. West Lafayette: Purdue University, 2010.
|
[31] |
JULIANO T, SCHNEIDER S. Instability and transition on the HIFiRE-5 in a Mach 6 quiet tunnel[C]//Proc of the 40th Fluid Dynamics Conference and Exhibit. 2010. doi: 10.2514/6.2010-5004
|
[32] |
MUÑOZ F, RADESPIEL R, THEISS A, et al. Experimental and numerical investigation of instabilities in conical boundary layers at Mach 6[C]//Proc of the 7th AIAA Theoretical Fluid Mechanics Conference. 2014. doi: 10.2514/6.2014-2778
|
[33] |
DINZL D J, CANDLER G V. Direct simulation of hypersonic crossflow instability on an elliptic cone[J]. AIAA Journal, 2017, 55(6): 1769–1782. doi: 10.2514/1.j055130
|
[34] |
WAN B B, TU G H, YUAN X X, et al. Identification of traveling crossflow waves under real hypersonic flight conditions[J]. Physics of Fluids, 2021, 33(4): 044110. doi: 10.1063/5.0046954
|
[35] |
NIU H B, YI S H, LIU X L, et al. Experimental study of hypersonic traveling crossflow instability over a yawed cone[J]. Acta Astronautica, 2022, 193: 173–181. doi: 10.1016/j.actaastro.2021.12.016
|
[36] |
黄冉冉, 张成键, 李创创, 等. 华中科技大学Φ0.5 m马赫6 Ludwieg管风洞设计与流场初步校测[J]. 空气动力学学报, 2023, 41(1): 39–48,85. DOI: 10.7638/kqdlxxb-2022.0146
HUANG R R, ZHANG C J, LI C C, et al. Design and preliminary freestream calibration of HUST Φ0.5 m Mach 6 Ludwieg tube wind tunnel[J]. Acta Aerodynamica Sinica, 2023, 41(1): 39–48,85. doi: 10.7638/kqdlxxb-2022.0146
|
[37] |
李学良, 李创创, 苏伟, 等. 分布式粗糙元对高超声速边界层不稳定性影响的实验研究[J]. 航空学报, 2024, 45(2): 128627. DOI: 10.7527/S1000-6893.2023.28627
LI X L, LI C C, SU W, et al. Experimental research of the influence of distributed roughness elements on hypersonic boundary layer instability[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 128627. doi: 10.7527/S1000-6893.2023.28627
|
[38] |
HEITMANN D, KÄHLER C, RADESPIEL R, et al. Disturbance-level and roughness-induced transition measurements in a conical boundary layer at Mach 6[C]//Proc of the 26th AIAA Aerodynamic Measurement Technology and Ground Testing Conference. 2008. doi: 10.2514/6.2008-3951
|
[39] |
MUÑOZ F, WU J, RADESPIEL R, et al. Freestream disturbances characterization in Ludwieg tubes at Mach 6[C]//Proc of the AIAA Scitech 2019 Forum. 2019. doi: 10.2514/6.2019-0878
|
[40] |
LI F, CHOUDHARI M, PAREDES P, et al. High-frequency instabilities of stationary crossflow vortices in a hypersonic boundary layer[J]. Physical Review Fluids, 2016, 1(5): 053603. doi: 10.1103/PhysRevFluids.1.053603
|