CHEN Jiufen, LING Gang, ZHANG Qinghu, XIE Futian, XU Xiaobin, ZHANG Yifeng. Infrared thermography experiments of hypersonic boundary-layer transition on a 7° half-angle sharp cone[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 60-66. DOI: 10.11729/syltlx20180172
Citation: CHEN Jiufen, LING Gang, ZHANG Qinghu, XIE Futian, XU Xiaobin, ZHANG Yifeng. Infrared thermography experiments of hypersonic boundary-layer transition on a 7° half-angle sharp cone[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 60-66. DOI: 10.11729/syltlx20180172

Infrared thermography experiments of hypersonic boundary-layer transition on a 7° half-angle sharp cone

More Information
  • Received Date: November 19, 2018
  • Revised Date: April 18, 2019
  • In order to promote the in-depth research on the hypersonic boundary layer transition and provide basic wind tunnel experimental data for the study of the boundary layer transition mechanism, the physical model validation, and the transition database construction, infrared thermography experiments of boundary layer transition are carried out in the Φ1 m hypersonic wind tunnel at CARDC. The effects of different unit Reynolds numbers, angles of attack and Mach numbers on the transition positions are studied on a 7° half-angle sharp cone. Test unit Reynolds numbers range from 0.49×107/m to 2.45×107/m. Test angles of attack range from -10° to 10°. Test Mach numbers range from 5 to 7. The head radius of the test model is 0.05mm. The quantitative infrared thermography technique is employed to obtain the temperature distribution photos of the model surface. By this way, the accurate transition positions and the effects of transition factors are obtained. Test results of the global temperature distribution show that an earlier transition occurs with the increase of Mach number. This is due to the larger Reynolds number and stronger flow field noise brought by the higher Mach number. As the unit Reynolds number increases, the transition position of the boundary layer moves forward and the transition Reynolds number remains constant about 3.0×106. When the angle of attack is small, a delayed transition occurs on the windward side and an earlier transition occurs on the leeward side with the increasing angle of attack. When the angle of attack is 10°, an earlier transition occurs at the center line of the windward side and reversed transition with angle of attack takes place, accompanied with a low heat flow strip induced by the flow separation on the leeward side.
  • [1]
    陈坚强, 涂国华, 张毅锋, 等.高超声速边界层转捩研究现状与发展趋势[J].空气动力学学报, 2017, 35(3): 311-327. DOI: 10.7638/kqdlxxb-2017.0030

    CHEN J Q, TU G H, ZHANG Y F, et al. Hypersonic boundary layer transition: what we know, where shall we go[J]. Acta Aerodynamica Sinica, 2017, 35(3): 311-327. DOI: 10.7638/kqdlxxb-2017.0030
    [2]
    柳森, 王宗浩, 谢爱民, 等.高超声速锥柱裙模型边界层转捩的弹道靶实验[J].实验流体力学, 2013, 27(6): 26-31. DOI: 10.3969/j.issn.1672-9897.2013.06.005

    LIU S, WANG Z H, XIE A M, et al. Ballistic range experiments of hypersonic boundary layer transition on a cone-cylinder-flare configuration[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(6): 26-31. DOI: 10.3969/j.issn.1672-9897.2013.06.005
    [3]
    刘向宏, 赖光伟, 吴杰.高超声速边界层转捩实验综述[J].空气动力学学报, 2018, 36(2): 196-212. DOI: 10.7638/kqdlxxb-2018.0017

    LIU X H, LAI G W, WU J. Boundary-layer transition experiments in hypersonic flow[J]. Acta Aerodynamica Sinica, 2018, 36(2): 196-212. DOI: 10.7638/kqdlxxb-2018.0017
    [4]
    常雨, 陈苏宇, 张扣立.高超声速边界层转捩特性试验探究[J].宇航学报, 2015, 36(11): 1318-1323. DOI: 10.3873/j.issn.1000-1328.2015.11.014

    CHANG Y, CHEN S Y, ZHANG K L. Experimental investigation of hypersonic boundary layer transition[J]. Journal of Astronautics, 2015, 36(11): 1318-1323. DOI: 10.3873/j.issn.1000-1328.2015.11.014
    [5]
    MUIR J F, TRUJILLO A A. Experimental investigation of the effects of nose bluntness, free-stream unit Reynolds number, and angle of attack on cone boundary layer transition at a Mach number of 6[R]. AIAA-1972-216, 1972.
    [6]
    STETSON K F, GEORGE H R. Shock tunnel investigation of boundary layer transition at Ma=5.5[J]. AIAA Journal, 1967, 5(5): 899-906.
    [7]
    GROSSIR G, PINNA F, BONUCCI G, et al. Hypersonic boundary layer transition on a 7 degree half-angle cone at Mach 10[R]. AIAA-2014-2779, 2014.
    [8]
    JULIANO T J, KIMMEL R L, WILLEMS S, et al. HIFiRE-1 boundary-layer transition: ground test results and stability analysis[R]. AIAA-2015-1736, 2015.
    [9]
    WILLEMS S, GVLHAN A, JULIANO T J, et al. Laminar to turbulent transition on the HIFiRE-1 cone at Mach 7 and high angle of attack[R]. AIAA-2014-0428, 2014.
    [10]
    JULIANO T J, KIMMEL R L, WILLEMS S, et al. HIFiRE-1 surface pressure fluctuations from high Reynolds, high angle ground test[R]. AIAA-2014-0429, 2014.
    [11]
    HORVATH T J, BERRY S A. HOLLIS B R, et al. Boundary layer transition on slender cones in conventional and low disturbance Mach 6 wind tunnels[R]. AIAA-2002-2743, 2012.
    [12]
    BI Z X, ZHU N J, SHEN Q, et al. Measurements on transition of hypersonic boundary layer over circular cone[R]. AIAA-2007-6728, 2007.
    [13]
    ZHANG C H, TANG Q, LEE C B. Hypersonic boundary-layer transition on a flared cone[J]. Acta Mechanica Sinica, 2013, 29(1): 48-54. DOI: 10.1007/s10409-013-0009-2
    [14]
    SOFTLEY E J. Boundary layer transition on hypersonic blunt, slender cones[R]. AIAA-1969-705, 1969.
    [15]
    KIMMEL R L. The effect of pressure gradients on transition zone length in hypersonic boundary layers[J]. Journal of Fluids Engineering, 1997, 119(1): 36-41. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5c4f282494cda00935103a30cf644bec
    [16]
    ANDERSON J D JR. Hypersonic and high temperature gas dynamics[M]. New-York: McGraw-Hill Book Company, 1989.
    [17]
    OWEN F K, HORSTMAN C C, STAINBACK P C, et al. Comparison of wind tunnel transition and freestream disturbances measurements[J]. AIAA Journal, 1975, 13(3): 266-269. DOI: 10.2514/3.49691
    [18]
    JULIANO T J, BORG M P, SCHNEIDER S P. Quiet tunnel measurements of HIFiRE-5 boundary-layer transition[J]. AIAA Journal, 2015, 53(4): 832-846. DOI: 10.2514/1.J053189
  • Related Articles

    [1]Xie Aimin, Huang Jie, Song Qiang, Zheng Lei, Ke Fawei, Liu Sen. Research and application of multi sequences laser shadowgraph technique[J]. Journal of Experiments in Fluid Mechanics, 2014, (4): 84-88. DOI: 10.11729/syltlxpz04
    [2]Li Tao, Tan Duowang, Li Qiang, Tan Xingchun, Fu Hua. Experimental study on dynamic response of bulk metallic glass under high velocity impact[J]. Journal of Experiments in Fluid Mechanics, 2014, (3): 110-113. DOI: 10.11729/syltlx2014pz25
    [3]XU Yun, XU Xiang, WANG Zhi-jian, YAO Lai-hui. Experimental investigation on multi-jet interference[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(5): 13-16. DOI: 10.3969/j.issn.1672-9897.2012.05.003
    [4]LIU Sen, XIE Ai-min, HUANG Jie, SONG Qiang, LUO Jin-yang. Four sequences laser shadowgraph for the visualization of hypervelocity impact debris cloud[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(1): 1-5. DOI: 10.3969/j.issn.1672-9897.2010.01.001
    [5]WANG Zhi-jian, WU Yi-zhao, XU Xiang, XU Yun. Force interaction experiment investigation for lateral jets[J]. Journal of Experiments in Fluid Mechanics, 2008, 22(3): 23-26. DOI: 10.3969/j.issn.1672-9897.2008.03.005
    [6]XU Yun, WANG Zhi-jian, XU Xiang. Experiment research about lateral jet in hypersonic flow[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(4): 20-24. DOI: 10.3969/j.issn.1672-9897.2005.04.004
    [7]Liu Sen, XIE Ai-min, HUANG Jie, LI Yi, LUO Jin-yang, SHI An-hua. Laser shadowgraph for the visualization of hypervelocity impact debris cloud[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(2): 35-39. DOI: 10.3969/j.issn.1672-9897.2005.02.007
    [8]A direct experimental simulation of side-jet steering[J]. Journal of Experiments in Fluid Mechanics, 2002, 16(2): 36-41. DOI: 10.3969/j.issn.1672-9897.2002.02.007
    [9]GUO Long-de, YANG Hui, ZENG Xue-jun. Laser holographic interferometer measurement to high speed and supersonic axial symmetric model[J]. Journal of Experiments in Fluid Mechanics, 2000, 14(2): 77-82. DOI: 10.3969/j.issn.1672-9897.2000.02.014
    [10]XU Qiang, ZHANG Fu-xiang, LI Kai-ming. Experimental study of the restrain method of shock wave effect on loading equipment[J]. Journal of Experiments in Fluid Mechanics, 1999, 13(4): 23-26. DOI: 10.3969/j.issn.1672-9897.1999.04.005

Catalog

    Article Metrics

    Article views (378) PDF downloads (56) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close