Citation: | Liu Tiefeng, Wang Xinwei, Tang Zhanqi, Jiang Nan. TRPIV experimental study of the effect of superhydrophobic surface on the coherent structure of turbulent boundary layer[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 90-96. DOI: 10.11729/syltlx20180101 |
[1] |
Bhushan B, Jung Y C, Koch K. Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion[J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2009, 367(1894):1631-1672. DOI: 10.1098/rsta.2009.0014
|
[2] |
Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202(1):1-8. DOI: 10.1007/s004250050096
|
[3] |
高雪峰, 江雷.天然超疏水生物表面研究的新进展[J].物理, 2006, 35(7):559-564. DOI: 10.3321/j.issn:0379-4148.2006.07.008
Gao X F, Jiang L. Recent studies of natural superhydophobic bio-surfaces[J]. Physics, 2006, 35(7):559-564. DOI: 10.3321/j.issn:0379-4148.2006.07.008
|
[4] |
Neinhuis C, Barthlott W. Characterization and distribution of water-repellent, self-cleaning plant surfaces[J]. Annals of Botany, 1997, 79(6):667-677. DOI: 10.1006/anbo.1997.0400
|
[5] |
王庆军, 陈庆民.超疏水表面的制备技术及其应用[J].高分子材料科学与工程, 2005, 21(2):6-10. DOI: 10.3321/j.issn:1000-7555.2005.02.002
Wang Q J, Chen Q M. Recent Research advances in manufacturing super hydrophobic membrane and applications[J]. Polymer Materials Science and Engineering, 2005, 21(2):6-10. DOI: 10.3321/j.issn:1000-7555.2005.02.002
|
[6] |
李杰, 张会臣.超疏水表面制备技术的研究进展[J].润滑与密封, 2011, 36(1):107-111. DOI: 10.3969/j.issn.0254-0150.2011.01.028
Li J, Zhang H C. Research progress in superhydrophobic surface preparation technology[J]. Lubrication Engineering, 2011, 36(1):107-111. DOI: 10.3969/j.issn.0254-0150.2011.01.028
|
[7] |
余斌, 吴学忠, 肖定邦.仿生超疏水表面技术及其军事应用[J].国防科技, 2015, 36(5):42-45. http://d.old.wanfangdata.com.cn/Periodical/gfkj201505009
Yu B, Wu X Z, Xiao D B. The bionic superhydrophobic surface technology and its military application[J]. National Defense Science and Technology, 2015, 36(5):42-45. http://d.old.wanfangdata.com.cn/Periodical/gfkj201505009
|
[8] |
Daniello R J, Waterhouse N E. Rothstein J P. Drag reduction in turbulent flows over superhydrophobic surfaces[J]. Physics of Fluids, 2009, 21(8):085103. DOI: 10.1063/1.3207885
|
[9] |
Min T, Kim J. Effects of hydrophobic surface on skin-friction drag[J]. Physics of Fluids, 2004, 16(7):L55-L58. DOI: 10.1063/1.1755723
|
[10] |
Park H, Park H, Kim J. A numerical study of the effects of superhydrophobic surface on skin-friction drag in turbulent channel flow[J]. Physics of Fluids, 2013, 25(11):110815. DOI: 10.1063/1.4819144
|
[11] |
Bidkar R A, Leblanc L, Kulkarni A J, et al. Skin-friction drag reduction in the turbulent regime using random-textured hydrophobic surfaces[J]. Physics of Fluids, 2014, 26(8):085108. DOI: 10.1063/1.4892902
|
[12] |
Busse A, Sandham N D. Influence of an anisotropic slip-length boundary condition on turbulent channel flow[J]. Physics of Fluids, 2012, 24(5):055111. DOI: 10.1063/1.4719780
|
[13] |
Park H, Sun G Y, Kim C J. Superhydrophobic turbulent drag reduction as a function of surface grating parameters[J]. Journal of Fluid Mechanics, 2014, 747:722-734. DOI: 10.1017/jfm.2014.151
|
[14] |
宋保维, 任峰, 胡海豹, 等.表面张力对超疏水微结构表面减阻的影响[J].物理学报, 2014, 63(5):054708.
Song B W, Ren F, Hu H B, et al. Drag reduction on micro-structured hydrophobic surfaces due to surface tension effect[J]. Acta Physica Sinica, 2014, 63(5):054708.
|
[15] |
吕鹏宇, 薛亚辉, 段慧玲.超疏水材料表面液-气界面的稳定性及演化规律[J].力学进展, 2016, 46(1):179-225. http://d.old.wanfangdata.com.cn/Periodical/lxjz201601004
Lyu P Y, Xue Y H, Duan H L. Stability and evolution of liquid-gas interfaces on superhydrophobic surfaces[J]. Advance in Mechanics, 2016, 46(1):179-225. http://d.old.wanfangdata.com.cn/Periodical/lxjz201601004
|
[16] |
Tian H P, Zhang J X, Jiang N, et al. Effect of hierarchical structured superhydrophobic surfaces on coherent structures in turbulent channel flow[J]. Experimental Thermal and Fluid Science, 2015, 69:27-37. DOI: 10.1016/j.expthermflusci.2015.07.018
|
[17] |
Tian H P, Zhang J X, Wang E D, et al. Experimental investigation on drag reduction in turbulent boundary layer over superhydrophobic surface by TRPIV[J]. Theoretical and Applied Mechanics Letters, 2015, 5(1):45-49. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxkb-e201501011
|
[18] |
王二丹, 田海平, 张静娴, 等.超疏水壁面湍流边界层减阻机理的TRPIV实验[J].航空动力学报, 2016, 31(12):2870-2877. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201612008
Wang E D, Tian H P, Zhang J X, et al. TRPIV experimental investigation of drag-reduction mechanism in turbulent boundary layer over superhydrophobic surfaces[J]. Journal of Aerospace Power, 2016, 31(12):2870-2877. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201612008
|
[19] |
苏健, 田海平, 姜楠.逆向涡对超疏水壁面减阻影响的TRPIV实验研究[J].力学学报, 2016, 48(5):1033-1039. http://d.old.wanfangdata.com.cn/Periodical/lxxb201605002
Su J, Tian H P, Jiang N. TRPIV experimental investigation of the effect of retrograde vortex on drag-reduction mechanism over superhydrophobic surfaces[J]. Chinese Journal of Theore-tical and Applied Mechanics, 2016, 48(5):1033-1039. http://d.old.wanfangdata.com.cn/Periodical/lxxb201605002
|
[20] |
Robinson S K. Coherent motions in the turbulent boundary layer[J]. Annual review of Fluid Mechanics, 1991, 23:601-639. DOI: 10.1146/annurev.fl.23.010191.003125
|
[21] |
Zhou J, Adrian R J, Balachandar S, et al. Mechanisms for generating coherent packets of hairpin vortices in channel flow[J]. Journal of Fluid Mechanics, 1999, 387:353-396. DOI: 10.1017/S002211209900467X
|
[22] |
Adrian R J, Meinhart C D, Tomkins C D. Vortex organization in the outer region of the turbulent boundary layer[J]. Journal of Fluid Mechanics, 2000, 422:1-54. DOI: 10.1017/S0022112000001580
|
[23] |
Adrian R J. Hairpin vortex organization in wall turbulence[J]. Physics of Fluids, 2007, 19(4):041301. DOI: 10.1063/1.2717527
|
[24] |
Kang Y D, Choi K S, Chun H H. Direct intervention of hairpin structures for turbulent boundary-layer control[J]. Physics of Fluids, 2008, 20(10):101517. DOI: 10.1063/1.3006346
|
[25] |
Kim K, Adrian R J, Balachandar S, et al. Dynamics of hairpin vortices and polymer-induced turbulent drag reduction[J]. Physical Review Letters, 2008, 100(13):134504. DOI: 10.1103/PhysRevLett.100.134504
|
[26] |
许春晓.壁湍流相干结构和减阻控制机理[J].力学进展, 2015, 45(1):201504. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxjz201501004
Xu C X. Coherent structure and drag-reduction mechanism in wall turbulence[J]. Advance in Mechanics, 2015, 45(1):201504. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxjz201501004
|
[27] |
卢思, 姚朝晖, 郝鹏飞, 等.具有微纳结构超疏水表面的槽道减阻特性研究[J].中国科学:物理学力学天文学, 2010, 40(7):916-942. http://d.old.wanfangdata.com.cn/Conference/7373351
|
[28] |
卢思, 姚朝晖, 郝鹏飞, 等.微纳米超疏水表面的制作与特性研究[C]//中国力学大会2011暨钱学森诞辰100周年纪念大会论文集. 2011.
|
[29] |
樊星, 姜楠.用平均速度剖面法测量壁湍流摩擦阻力[J].力学与实践, 2005, 27(1):28-30. DOI: 10.3969/j.issn.1000-0879.2005.01.007
Fan X, Jiang N. Skin friction measurement in turbulent boundary layer by mean velocity profile method[J]. Mechanics in Engineering, 2005, 27(1):28-30. DOI: 10.3969/j.issn.1000-0879.2005.01.007
|
[30] |
Ganapathisubramani B, Hutchins N, Hambleton W T, et al. Investigation of large-scale coherence in a turbulent boundary layer using two-point correlations[J]. Journal of Fluid Mechanics, 2005, 524:57-80. DOI: 10.1017/S0022112004002277
|
[31] |
Adrian R J, Moin P, Moser R D. Stochastic estimation of conditional eddies in turbulent channel flow[C]//Proc of the Studying Turbulence Using Numerical Simulation Databases. 1987.
|
[32] |
Adrian R J. Stochasticestimation of conditional structure:a review[J]. Applied Scientific Research, 1994, 53(3-4):291-303. DOI: 10.1007/BF00849106
|
[33] |
Christensen K T, Adrian R J. Statistical evidence of hairpin vortex packets in wall turbulence[J]. Journal of Fluid Mechanics, 2001, 431:433-443. DOI: 10.1017/S0022112001003512
|
[34] |
Chakraborty P, Balachandar S, Adrian R J. On the relationships between local vortex identification schemes[J]. Journal of Fluid Mechanics, 2005, 535:189-214. DOI: 10.1017/S0022112005004726
|
[35] |
Chong M S, Perry A E, Cantwell B J. A general classification of three-dimensional flow fields[J]. Physics of Fluids A:Fluid Dynamics, 1990, 2(5):765-777. DOI: 10.1063/1.857730
|
[36] |
王鑫, 李山, 唐湛棋, 等.沟槽对湍流边界层中展向涡影响的实验研究[J].实验流体力学, 2018, 32(1):55-63. http://www.syltlx.com/CN/abstract/abstract11080.shtml
Wang X, Li S, Tang Z Q, et al. An experimental study on riblet-induced spanwise vortices in turbulent boundary layers[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1):55-63. http://www.syltlx.com/CN/abstract/abstract11080.shtml
|
[37] |
Tang Z Q, Wu Y H, Jia Y X, et al. PIV measurements of a turbulent boundary layer perturbed by a wall-mounted transverse circular cylinder element[J]. Flow, Turbulence and Combustion, 2018, 100(2):365-389. DOI: 10.1007/s10494-017-9852-8
|
[38] |
Deng S C, Pan C, Wang J J, et al. On the spatial organization of hairpin packets in a turbulent boundary layer at low-to-moderate Reynolds number[J]. Journal of Fluid Mechanics, 2018, 844:635-668. DOI: 10.1017/jfm.2018.160
|
1. |
郭沛洋,张毅,张梦卓,胡海豹. 亲水-超疏水相间表面通气减阻实验研究. 力学学报. 2024(01): 94-100 .
![]() | |
2. |
程肖岐,范子椰,唐湛棋,白建侠,姜楠. 壁湍流等动量区空间分布的实验研究. 实验流体力学. 2024(04): 21-28 .
![]() | |
3. |
高南,刘玄鹤. 实用化壁面切应力测量技术的综述与展望. 空气动力学学报. 2023(03): 1-24 .
![]() | |
4. |
刘宇陆,王宇泽,李家骅,陶亦舟,邱翔. 逆壁射流中射流剪切层内湍流结构特性的实验研究. 力学学报. 2023(04): 814-823 .
![]() | |
5. |
王轩,范子椰,陈乐天,唐湛棋,姜楠. 流向凹曲率壁面湍流边界层的TRPIV实验研究. 实验流体力学. 2022(06): 1-9 .
![]() | |
6. |
刘丽霞,王康俊,王鑫蔚,田海平,姜楠. 沟槽超疏水复合壁面湍流边界层减阻机理的TRPIV实验研究. 实验流体力学. 2021(01): 117-125 .
![]() | |
7. |
陈正云,张清福,潘翀,刘彦鹏,蔡楚江. 超疏水旋转圆盘气膜层减阻的实验研究. 实验流体力学. 2021(03): 52-59 .
![]() | |
8. |
冯家兴,胡海豹,卢丙举,秦丽萍,张梦卓,杜鹏,黄潇. 超疏水沟槽表面通气减阻实验研究. 力学学报. 2020(01): 24-30 .
![]() | |
9. |
张梦卓,胡海豹,杜鹏,黄潇. 超疏水表面水下电解补气方法研究. 实验流体力学. 2020(01): 67-71 .
![]() |