Citation: | Liu Tiefeng, Wang Xinwei, Tang Zhanqi, Jiang Nan. TRPIV experimental study of the effect of superhydrophobic surface on the coherent structure of turbulent boundary layer[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 90-96. DOI: 10.11729/syltlx20180101 |
[1] |
Bhushan B, Jung Y C, Koch K. Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion[J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2009, 367(1894):1631-1672. DOI: 10.1098/rsta.2009.0014
|
[2] |
Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202(1):1-8. DOI: 10.1007/s004250050096
|
[3] |
高雪峰, 江雷.天然超疏水生物表面研究的新进展[J].物理, 2006, 35(7):559-564. DOI: 10.3321/j.issn:0379-4148.2006.07.008
Gao X F, Jiang L. Recent studies of natural superhydophobic bio-surfaces[J]. Physics, 2006, 35(7):559-564. DOI: 10.3321/j.issn:0379-4148.2006.07.008
|
[4] |
Neinhuis C, Barthlott W. Characterization and distribution of water-repellent, self-cleaning plant surfaces[J]. Annals of Botany, 1997, 79(6):667-677. DOI: 10.1006/anbo.1997.0400
|
[5] |
王庆军, 陈庆民.超疏水表面的制备技术及其应用[J].高分子材料科学与工程, 2005, 21(2):6-10. DOI: 10.3321/j.issn:1000-7555.2005.02.002
Wang Q J, Chen Q M. Recent Research advances in manufacturing super hydrophobic membrane and applications[J]. Polymer Materials Science and Engineering, 2005, 21(2):6-10. DOI: 10.3321/j.issn:1000-7555.2005.02.002
|
[6] |
李杰, 张会臣.超疏水表面制备技术的研究进展[J].润滑与密封, 2011, 36(1):107-111. DOI: 10.3969/j.issn.0254-0150.2011.01.028
Li J, Zhang H C. Research progress in superhydrophobic surface preparation technology[J]. Lubrication Engineering, 2011, 36(1):107-111. DOI: 10.3969/j.issn.0254-0150.2011.01.028
|
[7] |
余斌, 吴学忠, 肖定邦.仿生超疏水表面技术及其军事应用[J].国防科技, 2015, 36(5):42-45. http://d.old.wanfangdata.com.cn/Periodical/gfkj201505009
Yu B, Wu X Z, Xiao D B. The bionic superhydrophobic surface technology and its military application[J]. National Defense Science and Technology, 2015, 36(5):42-45. http://d.old.wanfangdata.com.cn/Periodical/gfkj201505009
|
[8] |
Daniello R J, Waterhouse N E. Rothstein J P. Drag reduction in turbulent flows over superhydrophobic surfaces[J]. Physics of Fluids, 2009, 21(8):085103. DOI: 10.1063/1.3207885
|
[9] |
Min T, Kim J. Effects of hydrophobic surface on skin-friction drag[J]. Physics of Fluids, 2004, 16(7):L55-L58. DOI: 10.1063/1.1755723
|
[10] |
Park H, Park H, Kim J. A numerical study of the effects of superhydrophobic surface on skin-friction drag in turbulent channel flow[J]. Physics of Fluids, 2013, 25(11):110815. DOI: 10.1063/1.4819144
|
[11] |
Bidkar R A, Leblanc L, Kulkarni A J, et al. Skin-friction drag reduction in the turbulent regime using random-textured hydrophobic surfaces[J]. Physics of Fluids, 2014, 26(8):085108. DOI: 10.1063/1.4892902
|
[12] |
Busse A, Sandham N D. Influence of an anisotropic slip-length boundary condition on turbulent channel flow[J]. Physics of Fluids, 2012, 24(5):055111. DOI: 10.1063/1.4719780
|
[13] |
Park H, Sun G Y, Kim C J. Superhydrophobic turbulent drag reduction as a function of surface grating parameters[J]. Journal of Fluid Mechanics, 2014, 747:722-734. DOI: 10.1017/jfm.2014.151
|
[14] |
宋保维, 任峰, 胡海豹, 等.表面张力对超疏水微结构表面减阻的影响[J].物理学报, 2014, 63(5):054708.
Song B W, Ren F, Hu H B, et al. Drag reduction on micro-structured hydrophobic surfaces due to surface tension effect[J]. Acta Physica Sinica, 2014, 63(5):054708.
|
[15] |
吕鹏宇, 薛亚辉, 段慧玲.超疏水材料表面液-气界面的稳定性及演化规律[J].力学进展, 2016, 46(1):179-225. http://d.old.wanfangdata.com.cn/Periodical/lxjz201601004
Lyu P Y, Xue Y H, Duan H L. Stability and evolution of liquid-gas interfaces on superhydrophobic surfaces[J]. Advance in Mechanics, 2016, 46(1):179-225. http://d.old.wanfangdata.com.cn/Periodical/lxjz201601004
|
[16] |
Tian H P, Zhang J X, Jiang N, et al. Effect of hierarchical structured superhydrophobic surfaces on coherent structures in turbulent channel flow[J]. Experimental Thermal and Fluid Science, 2015, 69:27-37. DOI: 10.1016/j.expthermflusci.2015.07.018
|
[17] |
Tian H P, Zhang J X, Wang E D, et al. Experimental investigation on drag reduction in turbulent boundary layer over superhydrophobic surface by TRPIV[J]. Theoretical and Applied Mechanics Letters, 2015, 5(1):45-49. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxkb-e201501011
|
[18] |
王二丹, 田海平, 张静娴, 等.超疏水壁面湍流边界层减阻机理的TRPIV实验[J].航空动力学报, 2016, 31(12):2870-2877. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201612008
Wang E D, Tian H P, Zhang J X, et al. TRPIV experimental investigation of drag-reduction mechanism in turbulent boundary layer over superhydrophobic surfaces[J]. Journal of Aerospace Power, 2016, 31(12):2870-2877. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201612008
|
[19] |
苏健, 田海平, 姜楠.逆向涡对超疏水壁面减阻影响的TRPIV实验研究[J].力学学报, 2016, 48(5):1033-1039. http://d.old.wanfangdata.com.cn/Periodical/lxxb201605002
Su J, Tian H P, Jiang N. TRPIV experimental investigation of the effect of retrograde vortex on drag-reduction mechanism over superhydrophobic surfaces[J]. Chinese Journal of Theore-tical and Applied Mechanics, 2016, 48(5):1033-1039. http://d.old.wanfangdata.com.cn/Periodical/lxxb201605002
|
[20] |
Robinson S K. Coherent motions in the turbulent boundary layer[J]. Annual review of Fluid Mechanics, 1991, 23:601-639. DOI: 10.1146/annurev.fl.23.010191.003125
|
[21] |
Zhou J, Adrian R J, Balachandar S, et al. Mechanisms for generating coherent packets of hairpin vortices in channel flow[J]. Journal of Fluid Mechanics, 1999, 387:353-396. DOI: 10.1017/S002211209900467X
|
[22] |
Adrian R J, Meinhart C D, Tomkins C D. Vortex organization in the outer region of the turbulent boundary layer[J]. Journal of Fluid Mechanics, 2000, 422:1-54. DOI: 10.1017/S0022112000001580
|
[23] |
Adrian R J. Hairpin vortex organization in wall turbulence[J]. Physics of Fluids, 2007, 19(4):041301. DOI: 10.1063/1.2717527
|
[24] |
Kang Y D, Choi K S, Chun H H. Direct intervention of hairpin structures for turbulent boundary-layer control[J]. Physics of Fluids, 2008, 20(10):101517. DOI: 10.1063/1.3006346
|
[25] |
Kim K, Adrian R J, Balachandar S, et al. Dynamics of hairpin vortices and polymer-induced turbulent drag reduction[J]. Physical Review Letters, 2008, 100(13):134504. DOI: 10.1103/PhysRevLett.100.134504
|
[26] |
许春晓.壁湍流相干结构和减阻控制机理[J].力学进展, 2015, 45(1):201504. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxjz201501004
Xu C X. Coherent structure and drag-reduction mechanism in wall turbulence[J]. Advance in Mechanics, 2015, 45(1):201504. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxjz201501004
|
[27] |
卢思, 姚朝晖, 郝鹏飞, 等.具有微纳结构超疏水表面的槽道减阻特性研究[J].中国科学:物理学力学天文学, 2010, 40(7):916-942. http://d.old.wanfangdata.com.cn/Conference/7373351
|
[28] |
卢思, 姚朝晖, 郝鹏飞, 等.微纳米超疏水表面的制作与特性研究[C]//中国力学大会2011暨钱学森诞辰100周年纪念大会论文集. 2011.
|
[29] |
樊星, 姜楠.用平均速度剖面法测量壁湍流摩擦阻力[J].力学与实践, 2005, 27(1):28-30. DOI: 10.3969/j.issn.1000-0879.2005.01.007
Fan X, Jiang N. Skin friction measurement in turbulent boundary layer by mean velocity profile method[J]. Mechanics in Engineering, 2005, 27(1):28-30. DOI: 10.3969/j.issn.1000-0879.2005.01.007
|
[30] |
Ganapathisubramani B, Hutchins N, Hambleton W T, et al. Investigation of large-scale coherence in a turbulent boundary layer using two-point correlations[J]. Journal of Fluid Mechanics, 2005, 524:57-80. DOI: 10.1017/S0022112004002277
|
[31] |
Adrian R J, Moin P, Moser R D. Stochastic estimation of conditional eddies in turbulent channel flow[C]//Proc of the Studying Turbulence Using Numerical Simulation Databases. 1987.
|
[32] |
Adrian R J. Stochasticestimation of conditional structure:a review[J]. Applied Scientific Research, 1994, 53(3-4):291-303. DOI: 10.1007/BF00849106
|
[33] |
Christensen K T, Adrian R J. Statistical evidence of hairpin vortex packets in wall turbulence[J]. Journal of Fluid Mechanics, 2001, 431:433-443. DOI: 10.1017/S0022112001003512
|
[34] |
Chakraborty P, Balachandar S, Adrian R J. On the relationships between local vortex identification schemes[J]. Journal of Fluid Mechanics, 2005, 535:189-214. DOI: 10.1017/S0022112005004726
|
[35] |
Chong M S, Perry A E, Cantwell B J. A general classification of three-dimensional flow fields[J]. Physics of Fluids A:Fluid Dynamics, 1990, 2(5):765-777. DOI: 10.1063/1.857730
|
[36] |
王鑫, 李山, 唐湛棋, 等.沟槽对湍流边界层中展向涡影响的实验研究[J].实验流体力学, 2018, 32(1):55-63. http://www.syltlx.com/CN/abstract/abstract11080.shtml
Wang X, Li S, Tang Z Q, et al. An experimental study on riblet-induced spanwise vortices in turbulent boundary layers[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1):55-63. http://www.syltlx.com/CN/abstract/abstract11080.shtml
|
[37] |
Tang Z Q, Wu Y H, Jia Y X, et al. PIV measurements of a turbulent boundary layer perturbed by a wall-mounted transverse circular cylinder element[J]. Flow, Turbulence and Combustion, 2018, 100(2):365-389. DOI: 10.1007/s10494-017-9852-8
|
[38] |
Deng S C, Pan C, Wang J J, et al. On the spatial organization of hairpin packets in a turbulent boundary layer at low-to-moderate Reynolds number[J]. Journal of Fluid Mechanics, 2018, 844:635-668. DOI: 10.1017/jfm.2018.160
|
[1] | ZHU Xinxin, YANG Yuanjian, WANG Hui, LI Zeyu, LUO Yue. Development and experimental analysis of circular foil pressure-heat flux gage[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20230044 |
[2] | ZHU Xinxin, LI Zeyu, ZHAO Wenfeng, WANG Hui, YANG Kai, YANG Qingtao. Research on fluid-thermal coupling simulation of water-cooled calorimeter and experimental analysis[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(6): 83-88. DOI: 10.11729/syltlx20210011 |
[3] | LONG Yongsheng, YUAN Jie, ZHAO Shunhong, YANG Bin, ZHU Xinxin. Influence of nozzle wall temperature on plate test in arc-heated wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(6): 47-53. DOI: 10.11729/syltlx20210055 |
[4] | ZHU Xinxin, WANG Hui, YANG Kai, ZHU Tao, YANG Qingtao, LIU Jinbo. Research on heat flux calculation and correction methods of the slug calorimeter[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(5): 97-102, 108. DOI: 10.11729/syltlx20190134 |
[5] | Zhang Yang, Jia Guangsen, Sha Xinguo, Chen Xing. Precise stagnation point heat flux measurement technique of sharp leading edges[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(6): 59-64. DOI: 10.11729/syltlx20180112 |
[6] | Fu Yang'aoxiao, Dong Weizhong, Ding Mingsong, Liu Qingzong, Gao Tiesuo, Jiang Tao. Numerical simulation of thermochemical non-equilibrium flow field in arc-jet tunnel[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 1-12. DOI: 10.11729/syltlx20180138 |
[7] | Zhu Xinxin, Yang Qingtao, Wang Hui, Yang Kai, Zhu Tao. Improvement of heat insulation structure in the slug calorimeter and test analysis[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 34-40. DOI: 10.11729/syltlx20180071 |
[8] | Gao Jiayi, Du Tao, Shen Yingzhe, Wu Yitian, Liang Xin, Shen Dan. Predication and wind tunnel experimental verification of thermal protection performance for low density ablative material in medium thermal environment[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(6): 37-42. DOI: 10.11729/syltlx20160015 |
[9] | Xu Kao, Chen Lianzhong. Experimental and numerical simulation studies on heat flux measurement for slug calorimeters in the conduit[J]. Journal of Experiments in Fluid Mechanics, 2015, (2): 84-89. DOI: 10.11729/syltlx20140127 |
[10] | Zhu Chao, Chen Dejiang, Zhou Wei, Du Baihe, Yao Feng. Evaluation of arc-heated wind-tunnel operation in CO2 atmosphere[J]. Journal of Experiments in Fluid Mechanics, 2015, (1): 31-36. DOI: 10.11729/syltlx20140019 |