GONG X C, WANG F, XI H D, et al. Effects of the spatial resolution of planar PIV on measured turbulence multi-point statistics[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(4): 44-57. DOI: 10.11729/syltlx20240002
Citation: GONG X C, WANG F, XI H D, et al. Effects of the spatial resolution of planar PIV on measured turbulence multi-point statistics[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(4): 44-57. DOI: 10.11729/syltlx20240002

Effects of the spatial resolution of planar PIV on measured turbulence multi-point statistics

More Information
  • Received Date: January 01, 2024
  • Revised Date: February 23, 2024
  • Accepted Date: March 19, 2024
  • Available Online: June 04, 2024
  • Particle Image Velocimetry (PIV), in particular planar PIV, has been widely implemented in the experimental study of statistical characteristics of turbulence because of its maturity in technology and capability to provide instantaneous flow fields. The spatial resolution of PIV measurement, i.e., the smallest scale of the flow field resolvable by PIV, is determined by the size of the Interrogation Window (IW) during image processing. Hence, small-scale turbulence fluctuations might not be accurately resolved, which leads to deviations in measured turbulence multi-point statistics, such as velocity structure functions, turbulent dissipation rate and so on. To quantify this deviation, we model the effect of PIV measurement on the instantaneous single-point velocity vectors as spatial filtering, which allows the change of the velocity structure functions and the turbulent dissipation rate measured by PIV with filter size to be derived. To check these predictions, synthetic PIV image pairs were generated based on simulated tracer particle motions following the velocity fields from direct numerical simulation (DNS) of isotropic turbulence, which were then processed by a standard PIV algorithm. Turbulence statistics obtained from such measured velocity fields were then compared with those from the exact DNS data to evaluate quantitative deviations. The results show that our model captures the effect of spatial resolutions on turbulence statistics in PIV measurement. Experimentally, planar PIV measurements were carried out in the center of a von Kármán swirling flow device, where the turbulence is nearly homogeneous and isotropic. The deviation between measured velocity structure functions and the K41 theory was also analyzed and corrected using the aforementioned model prediction. This work provides a theoretical guidance for examing turbulence statistics measured by PIV, especially multi-point statistics at small scales.

  • [1]
    WESTERWEEL J, ELSINGA G E, ADRIAN R J. Particle image velocimetry for complex and turbulent flows[J]. Annual Review of Fluid Mechanics, 2013, 45: 409–436. doi: 10.1146/annurev-fluid-120710-101204
    [2]
    SCHROEDER A, WILLERT C E. Particle Image Velocimetry: New Developments and Recent Applications[M]. Berlin: Springer, 2008.
    [3]
    王福君, 王洪平, 高琪, 等. 鱼游动涡结构PIV实验研究[J]. 实验流体力学, 2020, 34(5): 20–28. DOI: 10.11729/syltlx20200039

    WANG F J, WANG H P, GAO Q, et al. PIV experimental study on fish swimming vortex structure[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(5): 20–28. doi: 10.11729/syltlx20200039
    [4]
    赵航, 佘文轩, 高琪, 等. 基于层析PIV的椭圆水翼近尾迹梢涡实验研究[J]. 实验流体力学, 2022, 36(2): 82–91. DOI: 10.11729/syltlx20210108

    ZHAO H, SHE W X, GAO Q, et al. TPIV study for near-field tip vortex from an elliptical hydrofoil[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(2): 82–91. doi: 10.11729/syltlx20210108
    [5]
    WORTH N A, NICKELS T B. Acceleration of Tomo-PIV by estimating the initial volume intensity distribution[J]. Experiments in Fluids, 2008, 45(5): 847–856. doi: 10.1007/s00348-008-0504-6
    [6]
    刘朝阳, 王鑫蔚, 王轩, 等. 微结构超疏水壁面湍流边界层减阻机理的TRPIV实验研究[J]. 实验流体力学. doi: 10.11729/syltlx20220016.

    LIU Z Y, WANG X W, WANG X, et al. Experimental study of the mechanism of drag reduction in turbulent boundary layers on the superhydrophobic structured wall with microstructure[J]. Journal of Experiments in Fluid Mechanics. doi: 10.11729/syltlx20220016.
    [7]
    WILLERT C E, GHARIB M. Digital particle image velocimetry[J]. Experiments in Fluids, 1991, 10(4): 181–193. doi: 10.1007/BF00190388
    [8]
    SAIKRISHNAN N, MARUSIC I, LONGMIRE E K. Assessment of dual plane PIV measurements in wall turbulence using DNS data[J]. Experiments in Fluids, 2006, 41(2): 265–278. doi: 10.1007/s00348-006-0168-z
    [9]
    ATKINSON C, BUCHMANN N A, AMILI O, et al. On the appropriate filtering of PIV measurements of turbulent shear flows[J]. Experiments in Fluids, 2013, 55(1): 1654. doi: 10.1007/s00348-013-1654-8
    [10]
    LI Q Y, PENG Z B, LIU L, et al. A comparison of different methods for estimating turbulent dissipation rate in under-resolved flow fields from synthetic PIV images[J]. Chemical Engineering Research and Design, 2021, 175: 161–170. doi: 10.1016/j.cherd.2021.09.004
    [11]
    VASSILICOS J C. Dissipation in turbulent flows[J]. Annual Review of Fluid Mechanics, 2015, 47: 95–114. doi: 10.1146/annurev-fluid-010814-014637
    [12]
    HASSID S, POREH M. A turbulent energy dissipation model for flows with drag reduction[J]. Journal of Fluids Engineering, 1978, 100(1): 107–112. doi: 10.1115/1.3448580
    [13]
    WANG G C, YANG F, WU K, et al. Estimation of the dissipation rate of turbulent kinetic energy: a review[J]. Chemical Engineering Science, 2021, 229: 116133. doi: 10.1016/j.ces.2020.116133
    [14]
    LAVOIE P, AVALLONE G, DE GREGORIO F, et al. Spatial resolution of PIV for the measurement of turbulence[J]. Experiments in Fluids, 2007, 43(1): 39–51. doi: 10.1007/s00348-007-0319-x
    [15]
    DE JONG J, CAO L, WOODWARD S H, et al. Dissipation rate estimation from PIV in zero-mean isotropic turbu-lence[J]. Experiments in Fluids, 2009, 46(3): 499–515. doi: 10.1007/s00348-008-0576-3
    [16]
    XU D, CHEN J. Accurate estimate of turbulent dissipation rate using PIV data[J]. Experimental Thermal and Fluid Science, 2013, 44: 662–672. doi: 10.1016/j.expthermflusci.2012.09.006
    [17]
    BUXTON O R H, LAIZET S, GANAPATHISUBRAMANI B. The effects of resolution and noise on kinematic features of fine-scale turbulence[J]. Experiments in Fluids, 2011, 51(5): 1417–1437. doi: 10.1007/s00348-011-1159-2
    [18]
    GANAPATHISUBRAMANI B, LAKSHMINARASIMHAN K, CLEMENS N T. Investigation of three-dimensional structure of fine scales in a turbulent jet by using cinematographic stereoscopic particle image velocimetry[J]. Journal of Fluid Mechanics, 2008, 598: 141–175. doi: 10.1017/s0022112007009706
    [19]
    STOLZ S, ADAMS N A. An approximate deconvolution procedure for large-eddy simulation[J]. Physics of Fluids, 1999, 11(7): 1699–1701. doi: 10.1063/1.869867
    [20]
    SCARANO F. Iterative image deformation methods in PIV[J]. Measurement Science and Technology, 2002, 13(1): R1–R19. doi: 10.1088/0957-0233/13/1/201
    [21]
    GAO Q, LIN H T, TU H, et al. A robust single-pixel particle image velocimetry based on fully convolutional networks with cross-correlation embedded[J]. Physics of Fluids, 2021, 33(12): 127125. doi: 10.1063/5.0077146
    [22]
    SCHARNOWSKI S, HAIN R, KÄHLER C J. Reynolds stress estimation up to single-pixel resolution using PIV-measurements[J]. Experiments in Fluids, 2012, 52(4): 985–1002. doi: 10.1007/s00348-011-1184-1
    [23]
    TANAKA T, EATON J K. A correction method for measuring turbulence kinetic energy dissipation rate by PIV: Validated by random Oseen vortices synthetic image test[J]. Experiments in Fluids, 2007, 42(6): 893–902. doi: 10.1007/s00348-007-0298-y
    [24]
    BUARIA D, BODENSCHATZ E, PUMIR A. Vortex stretching and enstrophy production in high Reynolds number turbulence[J]. Physical Review Fluids, 2020, 5(10): 104602. doi: 10.1103/physrevfluids.5.104602
    [25]
    BUARIA D, PUMIR A, BODENSCHATZ E, et al. Extreme velocity gradients in turbulent flows[J]. New Journal of Physics, 2019, 21(4): 043004. doi: 10.1088/1367-2630/ab0756
    [26]
    TANAKA T, EATON J K. Sub-Kolmogorov resolution particle image velocimetry measurements of particle-laden forced turbulence[J]. Journal of Fluid Mechanics, 2010, 643: 177–206. doi: 10.1017/s0022112009992023
    [27]
    ZHANG Y B, BODENSCHATZ E, XU H T, et al. Experimental observation of the elastic range scaling in turbulent flow with polymer additives[J]. Science Advances, 2021, 7(14): eabd3525. doi: 10.1126/sciadv.abd3525
    [28]
    SHENG J, MENG H, FOX R O. A large eddy PIV method for turbulence dissipation rate estimation[J]. Chemical Engineering Science, 2000, 55(20): 4423–4434. doi: 10.1016/s0009-2509(00)00039-7
    [29]
    WESTERWEEL J. On velocity gradients in PIV interrogation[J]. Experiments in Fluids, 2008, 44(5): 831–842. doi: 10.1007/s00348-007-0439-3
    [30]
    BATCHELOR G K. Pressure fluctuations in isotropic turbulence[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1951, 47(2): 359–374. doi: 10.1017/s0305004100026712
    [31]
    KOLMOGOROV A N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers[J]. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 1991, 434(1890): 9-13. doi: 10.1098/rspa.1991.0075
    [32]
    POPE S B. Turbulent flows[M]. Cambridge: Cambridge University Press, 2000. doi: 10.1017/CBO9780511840531
    [33]
    BUARIA D, SREENIVASAN K R. Lagrangian acceleration and its Eulerian decompositions in fully developed turbulence[J]. Physical Review Fluids, 2023, 8(3): L032601. doi: 10.1103/physrevfluids.8.l032601
    [34]
    NI R, XIA K Q. Kolmogorov constants for the second-order structure function and the energy spectrum[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2013, 87(2): 023002. doi: 10.1103/PhysRevE.87.023002
    [35]
    LI Y, PERLMAN E, WAN M P, et al. A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence[J]. Journal of Turbulence, 2008, 9: 1–29. doi: 10.1080/14685240701767332
    [36]
    RAFFEL M, WILLERT C E, SCARANO F, et al. Particle Image Velocimetry: a practical guide[M]. Cham: Springer International Publishing, 2018. doi: 10.1007/978-3-319-68852-7
    [37]
    THIELICKE W, SONNTAG R. Particle Image Velocimetry for MATLAB: Accuracy and enhanced algorithms in PIVlab[J]. Journal of Open Research Software, 2021, 9(1): 12. doi: 10.5334/jors.334
    [38]
    张亿宝. 高聚物添加剂对湍流能量级串过程的影响[D]. 西安: 西北工业大学, 2021: 19-29.
    [39]
    DOUADY S, COUDER Y, BRACHET M E. Direct observation of the intermittency of intense vorticity filaments in turbulence[J]. Physical Review Letters, 1991, 67(8): 983–986. doi: 10.1103/PhysRevLett.67.983
    [40]
    MAURER J, TABELING P, ZOCCHI G. Statistics of turbulence between two counterrotating disks in low-temperature helium gas[J]. EPL (Europhysics Letters), 1994, 26(1): 31–36. doi: 10.1209/0295-5075/26/1/006
    [41]
    VOTH G A, SATYANARAYAN K, BODENSCHATZ E. Lagrangian acceleration measurements at large Reynolds numbers[J]. Physics of Fluids, 1998, 10(9): 2268–2280. doi: 10.1063/1.869748
    [42]
    BOURGOIN M, OUELLETTE N T, XU H T, et al. The role of pair dispersion in turbulent flow[J]. Science, 2006, 311(5762): 835–838. doi: 10.1126/science.1121726
  • Related Articles

    [1]DU Baihe, ZHANG Songhe, GE Qiang, WANG Maogang. Study on flow field characteristics of inert gas-air hybrid arc[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(5): 69-75. DOI: 10.11729/syltlx20210052
    [2]ZHANG Xinghuan, ZHANG Pingtao, PENG Bo, YI Xian. Prediction of icing wind tunnel temperature field with machine learning[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(5): 8-15. DOI: 10.11729/syltlx20210196
    [3]Fu Cheng, Zhao Bo, Xu Dachuan, Liao Daxiong, Pei Haitao, Zhu Bo, Qin Honggang. Investigation on flow turbulent characteristics of plate-fin and tube-fin heat exchanger[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(6): 22-27. DOI: 10.11729/syltlx20190036
    [4]Wang Feng, Xu Jinglei, Wang Yangsheng. Study of flow field characteristics of an over-under TBCC exhaust system during mode transition process[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 68-75. DOI: 10.11729/syltlx20190037
    [5]Gong Jishuang, Zhou Lin, Zhang Yining, Teng Honghui. Investigation on flow field structure of rotating detonation using the method of characteristics[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(1): 89-96. DOI: 10.11729/syltlx20180072
    [6]Liao Daxiong, Chen Jiming, Zheng Juan, Chen Qin, Pei Haitao, Wu Shenghao. General performance of 0.6m continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 88-93. DOI: 10.11729/syltlx20170086
    [7]Yang Hong, Luo Yue, Wu Dong, Zhou Ping. Study on supersonic turbulence plate ablation flow field in arc heater[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(4): 72-77. DOI: 10.11729/syltlx20170181
    [8]Yu Mingxing, Bai Shuxin, Xu Xiaoliang, Cao Zhanwei. Research on method for evaluating the thermal protective performance of non-catalysis material in non-equilibrium flow[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4): 84-89. DOI: 10.11729/syltlx20170084
    [9]Luo Yue, Zhou Wei, Yang Hong, Chen Wei. CFD analysis of the arc heater turbulent flow field of flat plate testing[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 86-92. DOI: 10.11729/syltlx20160088
    [10]Yang Bo, Liu Sen. Investigation of the performance of flow field in supersonic/hypersonic wind tunnel with different test section geometry configurations[J]. Journal of Experiments in Fluid Mechanics, 2014, (4): 59-64. DOI: 10.11729/syltlx20130023
  • Cited by

    Periodical cited type(18)

    1. 韩笑,高创,郑怡彤,刘小兵. 切角凹槽矩形截面桥塔的气动特性试验研究. 石家庄铁道大学学报(自然科学版). 2024(01): 9-15+23 .
    2. 白桦,刘博祥,姬乃川,李加武. 节段模型二元端板合理尺寸估算方法. 振动与冲击. 2023(02): 312-320 .
    3. 王仰雪,刘庆宽,靖洪淼,李震,孙一飞. 倾斜栏杆对流线型箱梁涡激振动性能影响的试验研究. 振动与冲击. 2023(06): 232-239+254 .
    4. 于畅,仇法梅,田学东,杨群,刘小兵. 圆角矩形柱平均气动力特性的雷诺数效应试验研究. 石家庄铁道大学学报(自然科学版). 2023(02): 29-34 .
    5. 杨群,于畅,刘小兵,刘庆宽. 不同圆角率的方形断面斯特罗哈数的雷诺数效应研究. 振动与冲击. 2023(11): 223-231 .
    6. 刘庆宽,王仰雪,孙一飞,李震,韩原,靖洪淼. 栏杆高度对流线型箱梁涡振性能影响的试验研究. 湖南大学学报(自然科学版). 2023(07): 140-150 .
    7. 刘路路,杨皓然,邹云峰,何旭辉,韩艳,陈志强. 公铁同层双幅非对称主梁气动干扰特性研究. 铁道科学与工程学报. 2023(10): 3861-3872 .
    8. 杨群,于畅,于文文,刘小兵. 圆角方柱气动特性的风洞试验研究. 振动与冲击. 2023(24): 59-68 .
    9. 韩振,李波,甄伟,杨庆山,田玉基. 宽厚比为5的超高层建筑风荷载特性研究. 哈尔滨工程大学学报. 2022(02): 196-202 .
    10. 张庆华,马文勇,杨杰,张彦,周帅伟. 不同风倾角下典型等边角钢静风力风洞试验研究. 振动工程学报. 2022(02): 277-283 .
    11. 白桦,王涵,姬乃川,李加武. 节段模型长宽比对风洞测力试验及计算分析的影响. 中国公路学报. 2022(08): 202-212 .
    12. 杨群,刘庆宽,韩瑞,刘小兵. 不同圆角率的方形断面气动特性的雷诺数效应. 振动与冲击. 2020(04): 150-156 .
    13. 沈国辉,姚剑锋,郭勇,邢月龙,楼文娟. 直径30 cm圆柱的气动力参数和绕流特性研究. 振动与冲击. 2020(06): 22-28 .
    14. 温青,池俊豪,华旭刚,王修勇,孙洪鑫. 端部条件和展弦比对矩形断面节段模型气动力特征的影响. 实验流体力学. 2020(04): 36-43 . 本站查看
    15. 任若松,梁新华,刘小兵,马文勇,刘庆宽. 准流线型桥梁断面气动力特性的雷诺数效应研究. 工程力学. 2020(S1): 139-144+167 .
    16. 李海飞,梁新华,孙一飞,崔会敏,刘庆宽. 流线型桥梁断面表面脉动风荷载特性研究. 工程力学. 2020(S1): 242-248+260 .
    17. 马文勇,汪冠亚,郑熙,陈铁,李智,张程远,方平治. 端部状态对斜置圆柱气动力分布的影响. 实验流体力学. 2019(02): 43-50 . 本站查看
    31. 杨群,刘庆宽,孙亚松,刘小兵. 圆角方形断面气动特性试验. 振动.测试与诊断. 2020(01): 140-147+208 .

    Other cited types(16)

Catalog

    Article Metrics

    Article views (770) PDF downloads (91) Cited by(34)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close