Bai Jianxia, Zheng Xiaobo, Jiang Nan. Phase-averaging waveforms of superstructures in outer layer of turbulent boundary layer[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(5): 1-8. DOI: 10.11729/syltlx20160064
Citation: Bai Jianxia, Zheng Xiaobo, Jiang Nan. Phase-averaging waveforms of superstructures in outer layer of turbulent boundary layer[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(5): 1-8. DOI: 10.11729/syltlx20160064

Phase-averaging waveforms of superstructures in outer layer of turbulent boundary layer

More Information
  • Received Date: April 17, 2016
  • Revised Date: June 15, 2016
  • An experimental investigation of the turbulent boundary layer was conducted in a wind tunnel with IFA300 constant temperature anemometer. The simultaneous time series of the streamwise velocity component and the normal velocity component at different wall-normal positions in the turbulent boundary layer were finely measured by a double-sensor X hot-wire probe. The distributions of the turbulence kinetic energy along with the scale were obtained in the near-wall region and the outer region of the turbulent boundary layer through wavelet transform on different velocity components. In the outer region of the turbulent boundary layer, the maximum energy scale and the average burst period of the coherent structure gradually increased. Large-scale vortical structure appeared in the outer region of the turbulent boundary layer. The conditional phase-averaging waveforms of the ejection and sweep events at the maximum energy scale of the coherent structure were extracted by the conditional phase-averaging technique in the near-wall region and the outer region of the turbulent boundary layer. The waveforms of ejection and sweep events in the outer region of the turbulent boundary layer were different from the waveforms in the near-wall region. The amplitude of negative Reynolds shear stress was reduced. The conditional phase-averaging waveforms of Reynolds shear stress presented positive and negative fluctuations.
  • [1]
    Robinson S K. Coherent motions in the turbulent boundary layer[J]. Annu Rev Fluid Mech, 1991, 23:601-639. DOI: 10.1146/annurev.fl.23.010191.003125
    [2]
    Falco R E. Coherent motions in the outer region of turbulent boundary layers[J]. Phys Fluids, 1977, 20:S124-S132. DOI: 10.1063/1.861721
    [3]
    Hutchins N, Marusic I. Evidence of very long meandering features in the logarithmic region of turbulent boundary layers[J]. J Fluid Mech, 2007, 579:1-28. DOI: 10.1017/S0022112006003946
    [4]
    Hutchins N, Hambleton W T, Marusic I. Inclined cross-stream stereo particle image velocimetry measurements in turbulent boundary layers[J]. J Fluid Mech, 2005, 541:21-54. DOI: 10.1017/S0022112005005872
    [5]
    Adrian R J, Meinhart C D, Tomkins C D. Vortex organization in the outer region of the turbulent boundary layer[J]. J Fluid Mech, 2000, 422:1-54. DOI: 10.1017/S0022112000001580
    [6]
    Liu Z, Adrian R J, Hanratty T J. Large-scale modes of turbulent channel flow:transport and structure[J]. J Fluid Mech, 2001, 448:53-80. https://www.researchgate.net/publication/231971325_Large-scale_modes_of_turbulent_channel_flow_Transport_and_structure
    [7]
    Kim K C, Adrian R J. Very large-scale motion in the outer layer[J]. Phys Fluids, 1999, 11(2):417-422. DOI: 10.1063/1.869889
    [8]
    Christensen K T, Adrian R J. Statistical evidence of hairpin vortex packets in wall turbulence[J]. J Fluid Mech, 2001, 431:433-443. DOI: 10.1017/S0022112001003512
    [9]
    Natrajan V K, Christensen K T. The role of coherent structures in subgrid-scale energy transfer within the log layer of wall turbulence[J]. Phys Fluids, 2006, 18(6):065104. DOI: 10.1063/1.2206811
    [10]
    Ganapathisubramani B, Hutchins N, Hambleton W T, et al. Investigation of large-scale coherence in a turbulent boundary layer using two-point correlations[J]. J Fluid Mech, 2005, 524:57-80. DOI: 10.1017/S0022112004002277
    [11]
    Wu Y, Christensen K T. Population trends of spanwise vortices in wall turbulence[J]. J Fluid Mech, 2006, 568:55-76. DOI: 10.1017/S002211200600259X
    [12]
    Guala M, Hommema S E, Adrian R J. Large-scale and very-large-scale motions in turbulent pipe flow[J]. J Fluid Mech, 2006, 554:521-542. DOI: 10.1017/S0022112006008871
    [13]
    Farge M. Wavelet transforms and their applications to turbulence[J]. Annu Rev Fluid Mech, 1992, 24:395-457. DOI: 10.1146/annurev.fl.24.010192.002143
    [14]
    Marie Farge, Nicholas Kevlahan, Valerie Perrier. Wavelets and turbulence[J]. Proceedings of the IEEE, 1996, 84(4):639-669. DOI: 10.1109/5.488705
    [15]
    姜楠, 王振东, 舒玮.子波分析辨识壁湍流猝发事件的能量最大准则[J].力学学报, 1997, 29(4):406-412. http://www.cnki.com.cn/Article/CJFDTOTAL-LXXB704.002.htm

    Jiang N, Wang Z D, Shu W. The maximum energy criterion for identifying burst events in wall turbulence using wavelet analysis[J]. Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(4):406-412. http://www.cnki.com.cn/Article/CJFDTOTAL-LXXB704.002.htm
    [16]
    Liu J H, Jiang N, Wang Z D, et al. Multi-scale coherent structures in turbulent boundary layer detected by locally averaged velocity structure functions[J]. Applied Mathematics and Mechanics, 2005, 26(4):456-464. http://www.cnki.com.cn/Article/CJFDTOTAL-YYSL200504010.htm
    [17]
    Zheng X B, Jiang N. Experimental study on spectrum and multi-scale nature of wall pressure and velocity in turbulent boundary layer[J]. Chinese Physics B, 2015, 24(6):064702. DOI: 10.1088/1674-1056/24/6/064702
    [18]
    Del Alamo J C, Jimenez J. Spectra of the very large anisotropic scales in turbulent channels[J]. Phys Fluids, 2003, 15(6):L41-44. DOI: 10.1063/1.1570830
    [19]
    Zhou J, Adrian R J, Balachandar S, et al. Mechanism for generating coherent packets of hairpin vortices in channel flow[J]. J Fluid Mech, 1999, 387:353-396. DOI: 10.1017/S002211209900467X
  • Related Articles

    [1]LI Meng, ZHAO Huiyong, YUAN Qiang, CHEN Li, MU Jinhe. Experimental research on the influence of turbulence intensity on boundary layer transition in Mach 3 supersonic flow[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(6): 56-64. DOI: 10.11729/syltlx20220087
    [2]LIANG Zhi, HU Fei, SHI Yu, ZHANG Zhe, LIU Lei. Research of mast shadow effect on the average wind speed and turbulence intensity by field experiment[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(2): 88-97. DOI: 10.11729/syltlx20220010
    [3]ZHU Bo, CHEN Jiming, WU Wei, PEI Haitao. Experimental investigation of turbulence intensity measurement in continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20220034
    [4]YANG Junwei, YANG Hua, FU Shifeng, ZONG Wangwang, SHA Chenglong. Wind tunnel experimental study of the grille-generated turbulence in the short test section[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(6): 86-93. DOI: 10.11729/syltlx20210042
    [5]HU Shangyu, LI Qiusheng, ZHANG Ming. Active turbulence simulation study of wind loads on standard low-rise building[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 22-29. DOI: 10.11729/syltlx20190157
    [6]Yu Qianqian, Wang Jinhua, Zhang Weijie, Zhang Meng, Huang Zuohua. Development of scale-controlled premixed turbulent burner and the flame structure analysis[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 10-17. DOI: 10.11729/syltlx20170150
    [7]Ma Ziran, Xu Minyi, Luan Jian, Liu Xiaopeng, Zhao Feifei. Statistical properties of turbulent free jets issuing from rectangular nozzles with different aspect ratios[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(1): 54-61. DOI: 10.11729/syltlx20160116
    [8]Zhu Bo, Peng Qiang, Tang Gengsheng. Digital signal process of low turbulence intensity based on EMD[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(5): 74-79. DOI: 10.11729/syltlx20150148
    [9]WU Wen-fei, XIE Jing-xing, GONG Zhi-jun, LI Bao-wei. PIV measurements of the turbulence integral length scale on cold combustion flow field in burner zone of tangential firing boiler[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(2): 38-41,50. DOI: 10.3969/j.issn.1672-9897.2012.02.008
    [10]LIU Gang, WANG Yang, WANG Xue-yan, SHI Jia-tao, WANG Jing. PIV measurements of the ILS on in-cylinder gas turbulent flow field of gasoline engine[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(1): 59-63,67. DOI: 10.3969/j.issn.1672-9897.2007.01.012
  • Cited by

    Periodical cited type(7)

    1. 郭沛洋,张毅,张梦卓,胡海豹. 亲水-超疏水相间表面通气减阻实验研究. 力学学报. 2024(01): 94-100 .
    2. 秦立果,刘建波,李航,卢山,马泽宇,王征,董光能. 水下湍流减阻技术研究进展. 表面技术. 2024(16): 1-18 .
    3. 张春来,张丽霞,王潇,吴银涛,王波. 沟槽型微纳复合结构表面的制备与减阻性能研究. 材料导报. 2023(12): 239-243 .
    4. 张奕,潘翀,窦建宇,张淼. 微型涡流发生器影响下的湍流边界层流场与摩阻特性. 实验流体力学. 2023(04): 48-58 . 本站查看
    5. 李茂林,张浩,玄克勇,石若冉,张志. 壁面微沟槽减阻技术研究进展. 煤气与热力. 2023(10): 12-19 .
    6. 李炳炘,张浩,玄克勇,孙国梁. 微沟槽减阻技术研究现状与进展综述. 煤气与热力. 2023(12): 21-27 .
    7. 罗忠,刘凯,周欣,胡俊波. 水下目标壳体复合涂层阻力试验. 船舶工程. 2022(09): 147-151 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views (253) PDF downloads (24) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close