Citation: | Bai Jianxia, Zheng Xiaobo, Jiang Nan. Phase-averaging waveforms of superstructures in outer layer of turbulent boundary layer[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(5): 1-8. DOI: 10.11729/syltlx20160064 |
[1] |
Robinson S K. Coherent motions in the turbulent boundary layer[J]. Annu Rev Fluid Mech, 1991, 23:601-639. DOI: 10.1146/annurev.fl.23.010191.003125
|
[2] |
Falco R E. Coherent motions in the outer region of turbulent boundary layers[J]. Phys Fluids, 1977, 20:S124-S132. DOI: 10.1063/1.861721
|
[3] |
Hutchins N, Marusic I. Evidence of very long meandering features in the logarithmic region of turbulent boundary layers[J]. J Fluid Mech, 2007, 579:1-28. DOI: 10.1017/S0022112006003946
|
[4] |
Hutchins N, Hambleton W T, Marusic I. Inclined cross-stream stereo particle image velocimetry measurements in turbulent boundary layers[J]. J Fluid Mech, 2005, 541:21-54. DOI: 10.1017/S0022112005005872
|
[5] |
Adrian R J, Meinhart C D, Tomkins C D. Vortex organization in the outer region of the turbulent boundary layer[J]. J Fluid Mech, 2000, 422:1-54. DOI: 10.1017/S0022112000001580
|
[6] |
Liu Z, Adrian R J, Hanratty T J. Large-scale modes of turbulent channel flow:transport and structure[J]. J Fluid Mech, 2001, 448:53-80. https://www.researchgate.net/publication/231971325_Large-scale_modes_of_turbulent_channel_flow_Transport_and_structure
|
[7] |
Kim K C, Adrian R J. Very large-scale motion in the outer layer[J]. Phys Fluids, 1999, 11(2):417-422. DOI: 10.1063/1.869889
|
[8] |
Christensen K T, Adrian R J. Statistical evidence of hairpin vortex packets in wall turbulence[J]. J Fluid Mech, 2001, 431:433-443. DOI: 10.1017/S0022112001003512
|
[9] |
Natrajan V K, Christensen K T. The role of coherent structures in subgrid-scale energy transfer within the log layer of wall turbulence[J]. Phys Fluids, 2006, 18(6):065104. DOI: 10.1063/1.2206811
|
[10] |
Ganapathisubramani B, Hutchins N, Hambleton W T, et al. Investigation of large-scale coherence in a turbulent boundary layer using two-point correlations[J]. J Fluid Mech, 2005, 524:57-80. DOI: 10.1017/S0022112004002277
|
[11] |
Wu Y, Christensen K T. Population trends of spanwise vortices in wall turbulence[J]. J Fluid Mech, 2006, 568:55-76. DOI: 10.1017/S002211200600259X
|
[12] |
Guala M, Hommema S E, Adrian R J. Large-scale and very-large-scale motions in turbulent pipe flow[J]. J Fluid Mech, 2006, 554:521-542. DOI: 10.1017/S0022112006008871
|
[13] |
Farge M. Wavelet transforms and their applications to turbulence[J]. Annu Rev Fluid Mech, 1992, 24:395-457. DOI: 10.1146/annurev.fl.24.010192.002143
|
[14] |
Marie Farge, Nicholas Kevlahan, Valerie Perrier. Wavelets and turbulence[J]. Proceedings of the IEEE, 1996, 84(4):639-669. DOI: 10.1109/5.488705
|
[15] |
姜楠, 王振东, 舒玮.子波分析辨识壁湍流猝发事件的能量最大准则[J].力学学报, 1997, 29(4):406-412. http://www.cnki.com.cn/Article/CJFDTOTAL-LXXB704.002.htm
Jiang N, Wang Z D, Shu W. The maximum energy criterion for identifying burst events in wall turbulence using wavelet analysis[J]. Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(4):406-412. http://www.cnki.com.cn/Article/CJFDTOTAL-LXXB704.002.htm
|
[16] |
Liu J H, Jiang N, Wang Z D, et al. Multi-scale coherent structures in turbulent boundary layer detected by locally averaged velocity structure functions[J]. Applied Mathematics and Mechanics, 2005, 26(4):456-464. http://www.cnki.com.cn/Article/CJFDTOTAL-YYSL200504010.htm
|
[17] |
Zheng X B, Jiang N. Experimental study on spectrum and multi-scale nature of wall pressure and velocity in turbulent boundary layer[J]. Chinese Physics B, 2015, 24(6):064702. DOI: 10.1088/1674-1056/24/6/064702
|
[18] |
Del Alamo J C, Jimenez J. Spectra of the very large anisotropic scales in turbulent channels[J]. Phys Fluids, 2003, 15(6):L41-44. DOI: 10.1063/1.1570830
|
[19] |
Zhou J, Adrian R J, Balachandar S, et al. Mechanism for generating coherent packets of hairpin vortices in channel flow[J]. J Fluid Mech, 1999, 387:353-396. DOI: 10.1017/S002211209900467X
|
[1] | LI Meng, ZHAO Huiyong, YUAN Qiang, CHEN Li, MU Jinhe. Experimental research on the influence of turbulence intensity on boundary layer transition in Mach 3 supersonic flow[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(6): 56-64. DOI: 10.11729/syltlx20220087 |
[2] | LIANG Zhi, HU Fei, SHI Yu, ZHANG Zhe, LIU Lei. Research of mast shadow effect on the average wind speed and turbulence intensity by field experiment[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(2): 88-97. DOI: 10.11729/syltlx20220010 |
[3] | ZHU Bo, CHEN Jiming, WU Wei, PEI Haitao. Experimental investigation of turbulence intensity measurement in continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20220034 |
[4] | YANG Junwei, YANG Hua, FU Shifeng, ZONG Wangwang, SHA Chenglong. Wind tunnel experimental study of the grille-generated turbulence in the short test section[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(6): 86-93. DOI: 10.11729/syltlx20210042 |
[5] | HU Shangyu, LI Qiusheng, ZHANG Ming. Active turbulence simulation study of wind loads on standard low-rise building[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 22-29. DOI: 10.11729/syltlx20190157 |
[6] | Yu Qianqian, Wang Jinhua, Zhang Weijie, Zhang Meng, Huang Zuohua. Development of scale-controlled premixed turbulent burner and the flame structure analysis[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 10-17. DOI: 10.11729/syltlx20170150 |
[7] | Ma Ziran, Xu Minyi, Luan Jian, Liu Xiaopeng, Zhao Feifei. Statistical properties of turbulent free jets issuing from rectangular nozzles with different aspect ratios[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(1): 54-61. DOI: 10.11729/syltlx20160116 |
[8] | Zhu Bo, Peng Qiang, Tang Gengsheng. Digital signal process of low turbulence intensity based on EMD[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(5): 74-79. DOI: 10.11729/syltlx20150148 |
[9] | WU Wen-fei, XIE Jing-xing, GONG Zhi-jun, LI Bao-wei. PIV measurements of the turbulence integral length scale on cold combustion flow field in burner zone of tangential firing boiler[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(2): 38-41,50. DOI: 10.3969/j.issn.1672-9897.2012.02.008 |
[10] | LIU Gang, WANG Yang, WANG Xue-yan, SHI Jia-tao, WANG Jing. PIV measurements of the ILS on in-cylinder gas turbulent flow field of gasoline engine[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(1): 59-63,67. DOI: 10.3969/j.issn.1672-9897.2007.01.012 |
1. |
郭沛洋,张毅,张梦卓,胡海豹. 亲水-超疏水相间表面通气减阻实验研究. 力学学报. 2024(01): 94-100 .
![]() | |
2. |
秦立果,刘建波,李航,卢山,马泽宇,王征,董光能. 水下湍流减阻技术研究进展. 表面技术. 2024(16): 1-18 .
![]() | |
3. |
张春来,张丽霞,王潇,吴银涛,王波. 沟槽型微纳复合结构表面的制备与减阻性能研究. 材料导报. 2023(12): 239-243 .
![]() | |
4. |
张奕,潘翀,窦建宇,张淼. 微型涡流发生器影响下的湍流边界层流场与摩阻特性. 实验流体力学. 2023(04): 48-58 .
![]() | |
5. |
李茂林,张浩,玄克勇,石若冉,张志. 壁面微沟槽减阻技术研究进展. 煤气与热力. 2023(10): 12-19 .
![]() | |
6. |
李炳炘,张浩,玄克勇,孙国梁. 微沟槽减阻技术研究现状与进展综述. 煤气与热力. 2023(12): 21-27 .
![]() | |
7. |
罗忠,刘凯,周欣,胡俊波. 水下目标壳体复合涂层阻力试验. 船舶工程. 2022(09): 147-151 .
![]() |