Wang Yong, Hao Nansong, Geng Zihai, Wang Wanbo. Measurements of circular cylinder's wake using time-resolved PIV[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1): 64-70. DOI: 10.11729/syltlx20170099
Citation: Wang Yong, Hao Nansong, Geng Zihai, Wang Wanbo. Measurements of circular cylinder's wake using time-resolved PIV[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1): 64-70. DOI: 10.11729/syltlx20170099

Measurements of circular cylinder's wake using time-resolved PIV

More Information
  • Received Date: August 01, 2017
  • Revised Date: November 19, 2017
  • Time-resolved particle image velocimetry (PIV) with sampling frequency f=1000Hz was used in 0.55m×0.4m aeroacoustic wind tunnel to test the unsteady characteristics of the flow behind a D=20mm diameter circular cylinder in an area of 7.5 times the diameter long and 6.6 times the diameter wide at Reynolds numbers of 2.74×104.The characteristics of the mean and pulsating flow fields, as well as the frequency characteristics of the cylinder's wake have been revealed.A phase-averaged analysis method based on the cross-correlation coefficients among the PIV velocity vectors has been proposed to capture the process of vortex production, shedding, development and dissipation.The results indicate that there exists a low-speed recirculated flow area behind the circular cylinder, where the flow structure changes most intensively.The vortices shed from the upper and lower sides of the circular cylinder cross and correlate around the 1.9D downstream area, where the turbulence is the strongest.Strouhal number corresponding to the vortex shedding frequency of the cylinder's wake is stable around 0.2.The proposed phase-averaged analysis method is simple but efficient to study the spatial-temporal evolutions of the vortex shedding, which can be easily applied to other areas in unsteady flow field measurement.
  • [1]
    Von Karman T H, Rubach H. On the mechanism of resistance in fluid[J]. Physikalische Zeitschrift, 1912, 13(5):351-358. https://www.sciencedirect.com/science/article/pii/S0017931013001993
    [2]
    Williamson C H K. Vortex shedding in the cylinder wake[J]. Annu Rev Fluid Mech, 1996, 28:477-539. DOI: 10.1146/annurev.fl.28.010196.002401
    [3]
    Raffel M, Willert C, Wereley S, et al. Particle image velocimetry:a practical guide[M]. 2nd ed. Berlin Heidelberg:Springer-Verlag, 2007.
    [4]
    Adrian R J. Twenty years of particle image velocimetry[J]. Exp Fluids, 2005, 39(2):159-169. DOI: 10.1007/s00348-005-0991-7
    [5]
    Comte-Bellot G. Hot-wire anemometry[J]. Annu Rev Fluid Mech, 1976, 8:209-231. DOI: 10.1146/annurev.fl.08.010176.001233
    [6]
    Perry A E. Hot-wire anemometry[M]. Oxford:Clarendon Press, 1982.
    [7]
    Julio S. An investigation of the near wake of a circular cylinder using a video-based digital cross-correlation particle image velocimetry technique[J]. Experimental Thermal and Fluid Science, 1996, 12(2):221-233. DOI: 10.1016/0894-1777(95)00086-0
    [8]
    Krothapalli A, Shih C, Lourenco L. The near wake of a circular cylinder at 0. 3 < M < 0. 6: a PIV study[R]. AIAA-94-0663, 1994.
    [9]
    Braza M, Perrin R, Hoarau Y. Turbulence properties in the cylinder wake at high Reynolds numbers[J]. Journal of Fluids and Structures, 2006, (22):757-771. https://www.sciencedirect.com/science/article/pii/S0889974606000429
    [10]
    Perrin R, Cid E, Cazin S, et al. Phase-averaged measurements of the turbulence properties in the near wake of a circular cylinder at high Reynolds number by 2C-PIV and 3C-PIV[J]. Exp Fluids, 2007, (42):93-109. DOI: 10.1007/s00348-006-0223-9.pdf
    [11]
    Sung J, Yoo J Y. Three-dimensional phase averaging of time-resolved PIV measurement data[J]. Meas Sci Technol, 2001, (12):655-662. http://ltces.dem.ist.utl.pt/lxlaser/lxlaser2014/finalworks2014/papers/02.10_6_170paper.pdf
    [12]
    Konstantinidis E, Balabani S, Yianneskis M. Conditional averaging of PIV plane wake data using a cross-correlation approach[J]. Exp Fluids, 2005, (39):38-47. DOI: 10.1007/s00348-005-0963-y.pdf
    [13]
    张玮, 王元, 徐忠, 等.圆柱绕流涡系演变的DPIV测试[J].空气动力学学报, 2002, 20(4):379-387. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=kqdx200204002&dbname=CJFD&dbcode=CJFQ

    Zhang W, Wang Y, Xu Z, et al. Experimental investigation of vortex evlovement around a circular cylinder by digital particle image velocimetry (DPIV)[J]. Acta Aerodynamica Sinca, 2002, 20(4):379-387. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=kqdx200204002&dbname=CJFD&dbcode=CJFQ
    [14]
    张孝棣, 蒋甲利, 贾元胜, 等.圆柱体绕流尾迹的PIV测量[J].实验流体力学, 2005, 19(2):74-78. http://manu27.magtech.com.cn/Jweb_jefm/CN/abstract/abstract9391.shtml

    Zhang X D, Jiang J L, Jia Y S, et al. Measurement of cylinder's wake by PIV[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(2):74-78. http://manu27.magtech.com.cn/Jweb_jefm/CN/abstract/abstract9391.shtml
    [15]
    涂程旭, 王昊利, 林建忠.圆柱绕流的流场特性及涡脱落规律研究[J].中国计量学院学报, 2008, 19(2):98-102. http://www.doc88.com/p-2641200740396.html

    Tu C X, Wang H L, Lin J Z. Experimental research on the flow characteristics and vortex shedding in the flow around a circular cylinder[J]. Journal of China Jiliang University, 2008, 19(2):98-102. http://www.doc88.com/p-2641200740396.html
    [16]
    Wlezien R W, Way J L. Techniques for the experimental investigation of the near wake of a circular cylinder[J]. AIAA J, 1979, 17(6):563-570. DOI: 10.2514/3.61178
    [17]
    Cantwell B, Coles D. An experimental study of entrainment and transport in the turbulent near wake of a circular cylinder[J]. J Fluid Mech, 1983, 136:321-374. DOI: 10.1017/S0022112083002189
    [18]
    Perrin R, Braza M, Cid E, et al. Coherent and turbulent process analysis in the flow past a circular cylinder at high Reynolds number[J]. Journal of Fluids and Structures, 2008, 24(8):1313-1325. DOI: 10.1016/j.jfluidstructs.2008.08.005
    [19]
    Zhou J, Adrian R J, Balachandar S, et al. Mechanisms for generating coherent packets of hairpin vortices in channel flow[J]. J Fluid Mech, 1999, 387:353-396. DOI: 10.1017/S002211209900467X
    [20]
    Kravchenko A G, Moin P. Numerical studies of flow over a circular cylinder at Re=3900[J]. Physics of Fluids, 2000, 12(2):403-417. DOI: 10.1063/1.870318
    [21]
    [22]
    Schlichting H. Boundary layer theory[M]. New York:McFraw-hill Book Company, 1968.
    [23]
    Franke J, Frank W. Large eddy simulation of the flow past a circular cylinder at Re=3900[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(10):1191-1206. DOI: 10.1016/S0167-6105(02)00232-5
    [24]
    Breuer M. A challenging test case for large eddy simulation:high Reynolds number circular cylinder flow[J]. Int J Heat Fluid Flow, 2000, 21:648-654. DOI: 10.1016/S0142-727X(00)00056-4
    [25]
    Dong S, Karniadakis E, Ekmekci A, et al. A combined direct numberical simulation-partical image velocimetry study of the turbulent near wake[J]. Journal of Fluid Mechanics, 2006, 569(12):185-207. https://www.researchgate.net/publication/260249661_A_combined_direct_numerical_simulation-particle_image_velocimetry_study_of_the_turbulent_near_wake
    [26]
    Fey U, Konig M, Eckelmann H. A new Strouhal-Reynolds number relationship for the circular cylinder in the range 47 < Re < 2×105[J]. Physics of Fluids, 1998, 10(7):1547-1549. DOI: 10.1063/1.869675
  • Cited by

    Periodical cited type(14)

    1. 景子枫,王万波,温新. 振荡射流控制方柱绕流的实验研究. 热能动力工程. 2024(01): 108-118+157 .
    2. 刘明潇,蒋冠宇,牛岭,李飞,崔金良,孙东坡. 大型调水明渠中圆柱桥墩的体型优化及消涡减阻效应研究. 应用基础与工程科学学报. 2024(06): 1740-1754 .
    3. 张子骁,马兴宇,白建侠,程肖岐,田海平,姜楠. 含有周期涡结构的湍流雷诺应力与平均速度梯度之间的迟滞效应. 力学季刊. 2023(03): 612-619 .
    4. 丁明杰,董林,班润泽,封凯缤. 双球颗粒对平板边界层流场结构的影响. 上海工程技术大学学报. 2023(03): 263-271 .
    5. 曾兆强,刘洪佳,昃彬,季龙庆. 管道插入部件振动分析方法研究. 化工设计. 2022(02): 30-34+1 .
    6. 王勇,郝南松,赖庆仁,李文建. 多孔前缘抑制圆柱-翼型干涉噪声实验. 航空动力学报. 2022(09): 1807-1814 .
    7. 邱翔,陈佳岩,李家骅,夏玉显,傅渊,刘宇陆. 雷诺数对近壁面圆柱绕流和壁湍流相互作用结构特性的影响. 水动力学研究与进展(A辑). 2021(01): 67-76 .
    8. 段敬添,张科,徐进,雷蒋,武俊梅. 圆形肋柱通道强化换热流动机理实验研究. 实验流体力学. 2021(04): 10-18 . 本站查看
    9. 黄龙龙,王艳华,刘勇,徐劲松,谢志敏. 内摆线齿轮泵齿廓在流场中的几何特性分析. 机床与液压. 2020(07): 143-148+165 .
    10. 袁方洋,曹阳,凃程旭,邹衡. 并列双圆柱尾流切向喷射控制研究. 实验流体力学. 2020(05): 70-78 . 本站查看
    11. 郝乐,陈龙,倪明玖. 流向磁场作用下圆柱绕流的直接数值模拟. 力学学报. 2020(06): 1645-1654 .
    12. 白旭,陈云. 串列不等直径双圆柱海流能发电振子涡激振动数值模拟. 可再生能源. 2020(12): 1698-1704 .
    13. 邢鹏飞,孙志强. 低雷诺数开缝圆柱绕流尾迹流场特性. 中南大学学报(自然科学版). 2019(04): 990-997 .
    14. 季言广,康灿,张永超. 基于时间解析PIV的串列水力转轮尾流特性研究. 实验流体力学. 2019(03): 97-105 . 本站查看

    Other cited types(15)

Catalog

    Article Metrics

    Article views (793) PDF downloads (52) Cited by(29)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close