XU S X,ZHAO W B,LI M Y,et al. Experimental study on pipe flow transition of XG solution and drag reduction characteristics with different mass fractions of NaCl[J]. Journal of Experiments in Fluid Mechanics, 2021,35(4):34-40.. DOI: 10.11729/syltlx20200041
Citation: XU S X,ZHAO W B,LI M Y,et al. Experimental study on pipe flow transition of XG solution and drag reduction characteristics with different mass fractions of NaCl[J]. Journal of Experiments in Fluid Mechanics, 2021,35(4):34-40.. DOI: 10.11729/syltlx20200041

Experimental study on pipe flow transition of XG solution and drag reduction characteristics with different mass fractions of NaCl

More Information
  • Received Date: April 07, 2020
  • Revised Date: May 12, 2020
  • Available Online: August 25, 2021
  • The Reynolds experiment was conducted to study the transition characteristics of Xanthan Gum (XG) solution (mass fraction: (0-400)×10–6) in a horizontal smooth circular pipe flow. The influence of different mass fractions of the salt (NaCl) environment on the drag reduction characteristics of XG solution was also investigated experimentally. The relationships of the drag reduction efficiency of XG solution (mass fraction: (100-300)×10–6) with the flow Reynolds number (Re) and the shearing time in different NaCl mass fractions (0、250×10–6、500×10–6和1000×10–6) were measured. Characterized by the generalized Reynolds number, the flow transition lower critical Reynolds number is delayed in an approximately linear mode with the increase of XG mass fraction, while the value of the upper critical Reynolds number rapidly drops to about 3000. The saturated drag reduction efficiency of XG solution decreases significantly with the dissolution of NaCl under the high Reynolds number condition. Nevertheless, a better drag reduction effect appears under the low Reynolds number condition. The shearing resistance of XG solution shows mass fraction effect, while the addition of an appropriate amount of salt can slightly improve the shearing resistance.
  • [1]
    SALEH H M,ANNUAR M S M,SIMARANI K. Ultrasound degradation of xanthan polymer in aqueous solution: Its scission mechanism and the effect of NaCl incorporation[J]. Ultrasonics Sonochemistry,2017,39:250-261. doi: 10.1016/j.ultsonch.2017.04.038
    [2]
    WYATT N B,LIBERATORE M W. Rheology and viscosity scaling of the polyelectrolyte xanthan gum[J]. Journal of Applied Polymer Science,2009,114(6):4076-4084. doi: 10.1002/app.31093
    [3]
    TOMS B A. Some observation on the flow of linear polymer solution through straight tubes at large Reynolds numbers[C]// Proc of the 1st International Congress on Rheology. 1948.
    [4]
    GILES W B,PETTIT W T. Stability of dilute viscoelastic flows[J]. Nature,1967,216(5114):470-472. doi: 10.1038/216470a0
    [5]
    DRAAD A A,KUIKEN G D C,NIEUWSTADT F T M. Laminar-turbulent transition in pipe flow for Newtonian and non-Newtonian fluids[J]. Journal of Fluid Mechanics,1998,377:267-312. doi: 10.1017/s0022112098003139
    [6]
    SAMANTA D,DUBIEF Y,HOLZNER M,et al. Elasto-inertial turbulence[J]. Proceedings of the National Academy of Sciences of the United States of America,2013,110(26):10557-10562. doi: 10.1073/pnas.1219666110
    [7]
    CHOUEIRI G H,LOPEZ J M,HOF B. Exceeding the asymptotic limit of polymer drag reduction[J]. Physical Review Letters,2018,120(12):124501. doi: 10.1103/physrevlett.120.124501
    [8]
    张根广,张鸣远,杨万英,等. 黄原胶溶液减阻特性实验[J]. 西安交通大学学报,2007,41(9):1092-1095. DOI: 10.3321/j.issn:0253-987x.2007.09.020

    ZHANG G G,ZHANG M Y,YANG W Y,et al. Drag reduction in turbulent pipe flows of aqueous Xanthan gum solutions[J]. Journal of Xi'an Jiaotong University,2007,41(9):1092-1095. doi: 10.3321/j.issn:0253-987x.2007.09.020
    [9]
    龚迪光,曲占庆,郭天魁,等. 径向井水力压裂摩阻影响因素与计算公式[J]. 钻井液与完井液,2016,33(3):102-106. DOI: 10.3696/j.issn.1001-5620.2016.03.021

    GONG D G,QU Z Q,GUO T K,et al. Factors affecting friction loss of hydraulic fracturing in ultra-short radius radial wells and the calculating equation thereof[J]. Drilling Fluid & Completion Fluid,2016,33(3):102-106. doi: 10.3696/j.issn.1001-5620.2016.03.021
    [10]
    HONG C H,CHOI H J,ZHANG K,et al. Effect of salt on turbulent drag reduction of Xanthan gum[J]. Carbohydrate Polymers,2015,121:342-347. doi: 10.1016/j.carbpol.2014.12.015
    [11]
    KARAMI H R,RAHIMI M,OVAYSI S. Degradation of drag reducing polymers in aqueous solutions[J]. Korean Journal of Chemi-cal Engineering,2018,35:34-43. doi: 10.1007/s11814-017-0264-1
    [12]
    JANG H Y,ZHANG K,CHON B H,et al. Enhanced oil recovery performance and viscosity characteristics of polysaccharide xanthan gum solution[J]. Journal of Industrial and Engineering Chemistry,2015,21:741-745. doi: 10.1016/j.jiec.2014.04.005
    [13]
    HABIBPOUR M,KOTEESWARAN S,CLARK P E. Drag reduction behavior of hydrolyzed polyacrylamide/polysaccharide mixed poly-mer solutions: effect of solution salinity and polymer concentration[J]. Rheologica Acta,2017,56(7-8):683-694. doi: 10.1007/s00397-017-1024-1
    [14]
    朱波,赵文斌,李明义,等. 黄原胶盐溶液减阻及抗剪切特性的实验研究[J]. 实验流体力学,2018,32(5):61-66. DOI: 10.11729/syltlx20180035

    ZHU B,ZHAO W B,LI M Y,et al. Experimental study on drag reduction and anti-shearing characteristics of Xanthan gum solution with NaCl[J]. Journal of Experiments in Fluid Mechanics,2018,32(5):61-66. doi: 10.11729/syltlx20180035
    [15]
    禹燕飞, 李昌烽, 赵文斌, 等. 一种高分子聚合物溶液的全流态减阻特性实验装置: 中国, ZL201320028552.4, [P]. 2013-07-17.
    [16]
    WHITE F M. Fluid Mechanics[M]. 4th Ed. New York: McGraw-Hill Series, 2015.
    [17]
    WYATT N B,LIBERATORE M W. The effect of counterion size and valency on the increase in viscosity in polyelectrolyte solutions[J]. Soft Matter,2010,6(14):3346. doi: 10.1039/c000423e
    [18]
    禹燕飞,李明义,赵文斌,等. 不同直径光滑圆管中黄原胶溶液流动减阻特性的实验研究[J]. 实验流体力学,2014,28(5):18-23. DOI: 10.11729/syltlx20130101

    YU Y F,LI M Y,ZHAO W B,et al. Experimental study on flow drag reduction characteristics of xanthan gum solution in smooth pipes with different diameters[J]. Journal of Experiments in Fluid Mechanics,2014,28(5):18-23. doi: 10.11729/syltlx20130101
    [19]
    HOLZNER M. Polymers reduce drag more than expected[J]. Physics,2018,11:id. 29. doi: 10.1103/physics.11.29
    [20]
    SOKHAL K S,GANGACHARYULU D,BULASARA V K. Effect of guar gum and salt concentrations on drag reduction and shear degradation properties of turbulent flow of water in a pipe[J]. Carbohydrate Polymers,2018,181:1017-1025. doi: 10.1016/j.carbpol.2017.11.048
    [21]
    李昌烽,禹燕飞,赵文斌,等. 黄原胶水溶液管道流动减阻特性的试验[J]. 江苏大学学报(自然科学版),2015,36(1):30-35. DOI: 10.3969/j.issn.1671-7775.2015.01.006

    LI C F,YU Y F,ZHAO W B,et al. Experiment on drag reduction characteristics of xanthan gum solution in pipe flow[J]. Journal of Jiangsu University (Natural Science Edition),2015,36(1):30-35. doi: 10.3969/j.issn.1671-7775.2015.01.006
  • Related Articles

    [1]WANG Shang, CHEN Binnian, CHEN Guoyong, YANG Xiaoquan, Weng Peifen. Mechanism and control of airframe noise of large passenger aircraft[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(3): 63-78. DOI: 10.11729/syltlx20230058
    [2]WEI Renke, LIU Yu. Review of slat noise mechanism and control in high-lift devices[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(3): 20-37. DOI: 10.11729/syltlx20230017
    [3]ZHANG Zongfa, XIAO Xinbiao, HAN Jian, YANG Yi. Analysis of aerodynamic noise mechanism and influencing factors at the skirt with grille under the vehicle at 400 km/h[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(1): 79-90. DOI: 10.11729/syltlx20230065
    [4]HU Yasen, ZHANG Pengjunyi, ZHUANG Guohui, WAN Zhenhua, SUN Dejun. Noise control of serrated trailing edge airfoil under small incidence angle[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(1): 28-36. DOI: 10.11729/syltlx20230031
    [5]CHEN Wenli, LIN Longhan, DENG Zhi, GAO Donglai. Passive control on flow past a circular cylinder with bionic nylon wires[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 66-75. DOI: 10.11729/syltlx20230019
    [6]WANG Yi, GU Yunsong, ZHOU Yuhang, SHI Nanxing. The linear control characteristic of the multi-wall passive fluidic thrust vectoring nozzle[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20230120
    [7]WANG Jun, ZHANG Liu, LI Binbin, ZHAO Lei, LI Chang, JIN Yi. Experimental study of passive control of jet deflection on wing upper surface[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(6): 79-85. DOI: 10.11729/syltlx20210027
    [8]LIU Jun, CAI Jinsheng, ZHOU Fangqi. Mach number sensitivity analysis of cavity noise[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(3): 104-110. DOI: 10.11729/syltlx20190079
    [9]LI Wenjian, CHEN Peng, WANG Yong, LU Xiangyu, WANG Junwei, ZHAO Kun. Experimental study on trailing edge with gradual flow resistance suppressing noise diffraction of BWB engine[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 79-86. DOI: 10.11729/syltlx20180175
    [10]Wang Xiansheng, Yang Dangguo, Liu Jun, Zhou Fangqi, Shi Ao. Progress of research on noise induced by compressible flow over cavities[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(3): 1-16. DOI: 10.11729/syltlx20170132

Catalog

    Article Metrics

    Article views (746) PDF downloads (34) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close