Citation: | WANG S, CHEN B N, CHEN G Y, et al. Mechanism and control of airframe noise of large passenger aircraft[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(3): 63-78. DOI: 10.11729/syltlx20230058 |
The aerodynamic noise is not only the key problem of airworthiness forensics of large airliners, but also an important index related to passenger comfort. High lift device noise and landing gear noise are the main sources of airframe noise. In this paper, the key problems of the noise mechanism and control of the noise high lift device and landing gear in the development of large passenger aircraft are studied. In view of the noise generation mechanism, a novel noise source analysis method is proposed for vortex dynamics processes such as vorticity near wall boundary and boundary vorticity flux. Aiming at the noise control of the airframe, the small-scale wavy control method of the slat wing cove and large-scale wavy control method of landing gear support strut are proposed. The numerical results show that the slat cove is the main noise source of the high lift devices. The noise and pure tone peaks of the low and middle frequencies are mainly from the slat cove and the leading edge of the main wing, and the trailing edge flap makes a relatively small contribution to the noise. A large number of complex large-scale turbulent vortex structures exist in the wake region of the landing gear and the cove region of wheels, which are the main noise source of the landing gear. The noise characteristics of each landing gear component basically exhibit broadband characteristics. The strut component has the largest radiation noise, and the axle and torque link components have relatively small radiation noise. The slat cove wavy noise control method has both drag reduction and noise reduction effects. The large-scale wavy noise control method of the landing gear can reduce the far-field radiation noise effectively. The research content of this paper provides technical support for the integrated pneumatic and noise design of high lift device and noise reduction design of the landing gear.
[1] |
LOCKARD D P, LILLEY G M. The airframe noise reduction challenge[R]. NASA TM-2004-213013, 2004.
|
[2] |
DOBRZYNSKI W. Almost 40 years of airframe noise research: what did we achieve?[J]. Journal of Aircraft, 2010, 47(2): 353–367. doi: 10.2514/1.44457
|
[3] |
朱自强, 兰世隆. 民机机体噪声及其降噪研究[J]. 航空学报, 2015, 36(2): 406–421.
ZHU Z Q, LAN S L. Study of airframe noise and its reduction for commercial aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2): 406–421.
|
[4] |
LI Y, WANG X N, ZHANG D J. Control strategies for aircraft airframe noise reduction[J]. Chinese Journal of Aeronautics, 2013, 26(2): 249–260. doi: 10.1016/j.cja.2013.02.001
|
[5] |
宋文萍, 余雷, 韩忠华. 飞机机体气动噪声计算方法综述[J]. 航空工程进展, 2010, 1(2): 125–131. DOI: 10.3969/j.issn.1674-8190.2010.02.007
SONG W P, YU L, HAN Z H. Status of investigation on airframe noise computation[J]. Advances in Aeronautical Science and Engineering, 2010, 1(2): 125–131. doi: 10.3969/j.issn.1674-8190.2010.02.007
|
[6] |
SINGER B A, LOCKARD D P, BRENTNER K S. Computational aeroacoustic analysis of slat trailing-edge flow[J]. AIAA Journal, 2000, 38(9): 1558–1564. doi: 10.2514/2.1177
|
[7] |
KHORRAMI M R, SINGER B A, BERKMAN M E. Time-accurate simulations and acoustic analysis of slat free shear layer[J]. AIAA Journal, 2002, 40(7): 1284–1291. doi: 10.2514/2.1817
|
[8] |
CHOUDHARI M M, KHORRAMI M R. Effect of three-dimensional shear-layer structures on slat cove unsteadiness[J]. AIAA Journal, 2007, 45(9): 2174–2186. doi: 10.2514/1.24812
|
[9] |
TAM C K W, PASTOUCHENKO N. Gap tones[J]. AIAA Journal, 2001, 39(8): 1442–1448. doi: 10.2514/2.1494
|
[10] |
CHOUDHARI M M, LOCKARD D P, MACARAEG M G, et al. Aeroacoustic experiments in the nasa langley low-turbulence pressure tunnel[R]. NASA TM-2002-211432, 2002.
|
[11] |
TAKEDA K, ZHANG X, NELSON P. Unsteady aerodynamics and aeroacoustics of a high-lift device configuration[C]//Proc of the 40th AIAA Aerospace Sciences Meeting & Exhibit. 2002: 570. doi: 10.2514/6.2002-570
|
[12] |
TAKEDA K, ASHCROFT G, ZHANG X, et al. Unsteady aerodynamics of slat cove flow in a high-lift device configuration[C]//Proc of the 39th Aerospace Sciences Meeting and Exhibit. 2001: 706. doi: 10.2514/6.2001-706
|
[13] |
ZHANG Y F, CHEN H X, WANG K, et al. Aeroacoustic prediction of a multi-element airfoil using wall-modeled large-eddy simulation[J]. AIAA Journal, 2017, 55(12): 4219–4233. doi: 10.2514/1.J055853
|
[14] |
刘兴强, 吕宏强, 黄文超. 基于高阶间断有限元法的气动噪声数值模拟[J]. 航空计算技术, 2012, 42(6): 21–24. DOI: 10.3969/j.issn.1671-654X.2012.06.006
LIU X Q, LYU H Q, HUANG W C. Numerical simulation of aeroacoustics based on higher order DG method[J]. Aeronautical Computing Technique, 2012, 42(6): 21–24. doi: 10.3969/j.issn.1671-654X.2012.06.006
|
[15] |
LI W P, GUO Y H, LIU W L. On the mechanism of acoustic resonances from a leading-edge slat[J]. Aerospace Science and Technology, 2021, 113: 106711. doi: 10.1016/j.ast.2021.106711
|
[16] |
SOULIEZ F, LONG L, MORRIS P, et al. Landing gear aerodynamic noise prediction using unstructured grids[C]//Proc of the 40th AIAA Aerospace Sciences Meeting & Exhibit. 2002: 799. doi: 10.2514/6.2002-799
|
[17] |
HEDGES L S, TRAVIN A K, SPALART P R. Detached-eddy simulations over a simplified landing gear[J]. Journal of Fluids Engineering, 2002, 124(2): 413–423. doi: 10.1115/1.1471532
|
[18] |
龙双丽, 聂宏, 薛彩军, 等. 飞机起落架气动噪声特性仿真与试验[J]. 航空学报, 2012, 33(6): 1002–1013.
LONG S L, NIE H, XUE C J, et al. Simulation and experiment on aeroacoustic noise characteristics of aircraft landing gear[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(6): 1002–1013.
|
[19] |
胡宁, 郝璇, 苏诚, 等. 基于分离涡模拟的起落架气动噪声研究[J]. 空气动力学学报, 2015, 33(1): 99–106.
HU N, HAO X, SU C, et al. Aeroacoustic study of landing gear by detached eddy simulation[J]. Acta Aerodynamica Sinica, 2015, 33(1): 99–106.
|
[20] |
KHORRAMI M, LOCKARD D. Effects of geometric details on slat noise generation and propagation[C]//Proc of the 12th AIAA/CEAS Aeroacoustics Conference (27th AIAA Aeroacoustics Conference). 2006: 2664. doi: 10.2514/6.2006-2664
|
[21] |
KAMLIYA JAWAHAR H, ALIHAN SHOWKAT ALI S, AZARPEYVAND M, et al. Aerodynamic and aeroacoustic performance of high-lift airfoil fitted with slat cove fillers[J]. Journal of Sound Vibration, 2020, 479: 115347. doi: 10.1016/j.jsv.2020.115347
|
[22] |
JIRASEK A, AMOIGNON O. Design of a high lift system with a leading edge droop nose[C]//Proc of the 27th AIAA Applied Aerodynamics Conference. 2009: 3614. doi: 10.2514/6.2009-3614
|
[23] |
KOPIEV V, ZAITSEV M, BELYAEV I, et al. Noise reduction potential through slat hook serrations[C]//Proc of the 17th AIAA/CEAS Aeroacoustics Conference (32nd AIAA Aeroacoustics Conference). 2011: 2909. doi: 10.2514/6.2011-2909
|
[24] |
KHORRAMI M R, BERKMAN M E, CHOUDHARI M. Unsteady flow computations of a slat with a blunt trailing edge[J]. AIAA Journal, 2000, 38(11): 2050–2058. doi: 10.2514/2.892
|
[25] |
IMAMURA T, URA H, YOKOKAWA Y, et al. Designing of slat cove filler as a noise reduction device for leading-edge slat[C]//Proc of the 13th AIAA/CEAS Aeroacoustics Conference (28th AIAA Aeroacoustics Conference). 2007: 3473. doi: 10.2514/6.2007-3473
|
[26] |
RACKL R, MILLER G, GUO Y, et al. Airframe Noise Studies: Review and Future Direction[R]. NASA CR-2005-213767, 2005.
|
[27] |
ANGLAND D, ZHANG X, MOLIN N. Measurements of flow around a flap side edge with porous edge treatment[J]. AIAA Journal, 2009, 47(7): 1660–1671. doi: 10.2514/1.39311
|
[28] |
KOOP L, EHRENFRIED K, DILLMANN A. Reduction of flap side-edge noise: passive and active flow control[C]//Proc of the 10th AIAA/CEAS Aeroacoustics Conference. 2004: 2803. doi: 10.2514/6.2004-2803
|
[29] |
ZHAO K, OKOLO P, NERI E, et al. Noise reduction technologies for aircraft landing gear-a bibliographic review[J]. Progress in Aerospace Sciences, 2020, 112: 100589. doi: 10.1016/j.paerosci.2019.100589
|
[30] |
THOMAS F, KOZLOV A, CORKE T. Plasma actuators for landing gear noise reduction[C]//Proc of the 11th AIAA/CEAS Aeroacoustics Conference. 2005: 3010. doi: 10.2514/6.2005-3010
|
[31] |
WICKERHOFF J, SIJPKES T. Aeroplane provided with noise-reducing means, as well as a landing gear and blowing means: m[P]. US10/621362. 2004-6-3.
|
[32] |
ZHAO K, ALIMOHAMMADI S, OKOLO P N, et al. Aerodynamic noise reduction using dual-jet planar air curtains[J]. Journal of Sound and Vibration, 2018, 432: 192–212. doi: 10.1016/j.jsv.2018.06.036
|
[33] |
DOBRZYNSKI W, CHOW L, GUION P, et al. A European study on landing gear airframe noise sources[C]//Proc of the 6th Aeroacoustics Conference and Exhibi. 2000: 1971. doi: 10.2514/6.2000-1971
|
[34] |
DOBRZYNSKI W M, SCHÖNING B, CHOW L C, et al. Design and testing of low noise landing gears[J]. International Journal of Aeroacoustics, 2006, 5(3): 233–262. doi: 10.1260/1475-472x.5.3.233
|
[35] |
SPITERI M, ZHANG X, MOLIN N, et al. The use of a fairing and split plate for bluff body noise control[C]//14th AIAA/CEAS Aeroacoustics Conference (29th AIAA Aeroacoustics Conference). 2008: 2817. doi: 10.2514/6.2008-2817
|
[36] |
刘沛清, 邢宇, 李玲, 等. 现代大型飞机起落架气动噪声研究进展[J]. 空气动力学学报, 2017, 35(6): 751–759.
LIU P Q, XING Y, LI L, et al. Progress in aeroacoustic investigation of modern large aircraft landing gear[J]. Acta Aerodynamica Sinica, 2017, 35(6): 751–759.
|
[37] |
WU J Z, MA H Y, ZHOU M D. Vortical flows[M]. Berlin: Springer, 2015.
|
[38] |
MENG K Y, ZHANG H X, SHI Y L, et al. Numerical study for turbulent flow of drag and flow noise with wavy wall[J]. Journal of Shanghai Jiaotong University (Science), 2011, 16(1): 45–54. doi: 10.1007/s12204-011-1093-8
|
[39] |
XU C Y, CHEN L W, LU X Y. Large-eddy simulation of the compressible flow past a wavy cylinder[J]. Journal of Fluid Mechanics, 2010, 665: 238–273. doi: 10.1017/s0022112010003927
|
[40] |
SHUR M L, SPALART P R, STRELETS M K, et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat and Fluid Flow, 2008, 29(6): 1638–1649. doi: 10.1016/j.ijheatfluidflow.2008.07.001
|
[41] |
SHUR M, SPALART P R, STRELETS M, et al. Detached-eddy simulation of an airfoil at high angle of attack[M]//RODI W, LAURENCE D. Engineering Turbulence Modelling and Experiments 4. Amsterdam: Elsevier, 1999: 669-678. doi: 10.1016/b978-008043328-8/50064-3
|
[42] |
WILLIAMS J E F, HAWKINGS D L. Sound generation by turbulence and surfaces in arbitrary motion[J]. Philosophical Transactions of the Royal Society of London Series A, 1969, 264(1151): 321–342. doi: 10.1098/rsta.1969.0031
|
[43] |
FARASSAT F. Derivation of formulations 1 and 1A of farassat[R]. NASA TM-2007-214853, 2007.
|
[44] |
CHOUDHARI M M, LOCKARD D P. Assessment of slat noise predictions for 30P30N high-lift configuration from BANC-III workshop[C]//Proc of the 21st AIAA/CEAS Aeroacoustics Conference. 2015: 2844. doi: 10.2514/6.2015-2844
|
[45] |
PASCIONI K A, CATTAFESTA L N. Aeroacoustic measurements of leading-edge slat noise[C]//Proc of the 22nd AIAA/CEAS Aeroacoustics Conference. 2016: 2960. doi: 10.2514/6.2016-2960
|
[46] |
ASHTON N, WEST A, MENDONÇA F. Flow dynamics past a 30P30N three-element airfoil using improved delayed detached-eddy simulation[J]. AIAA Journal, 2016, 54(11): 3657–3667. doi: 10.2514/1.J054521
|
[47] |
CHEN B N, YANG X Q, CHEN G Y, et al. Numerical study on the flow and noise control mechanism of wavy cylinder[J]. Physics of Fluids, 2022, 34(3): 036108. doi: 10.1063/5.0082896
|