Citation: | HU Y S, ZHANG P J Y, ZHUANG G H, et al. Noise control of serrated trailing edge airfoil under small incidence angle[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(1): 28-36. DOI: 10.11729/syltlx20230031 |
[1] |
HOWE M S. Aerodynamic noise of a serrated trailing edge[J]. Journal of Fluids and Structures, 1991, 5(1): 33–45. doi: 10.1016/0889-9746(91)80010-B
|
[2] |
LYU B, AZARPEYVAND M, SINAYOKO S. Prediction of noise from serrated trailing edges[J]. Journal of Fluid Mechanics, 2016, 793: 556–588. doi: 10.1017/jfm.2016.132
|
[3] |
AMIET R K. Noise due to turbulent flow past a trailing edge[J]. Journal of Sound and Vibration, 1976, 47(3): 387–393. doi: 10.1016/0022-460X(76)90948-2
|
[4] |
HUANG X. Theoretical model of acoustic scattering from a flat plate with serrations[J]. Journal of Fluid Mechanics, 2017, 819: 228–257. doi: 10.1017/jfm.2017.176
|
[5] |
AYTON L J. Analytic solution for aerodynamic noise generated by plates with spanwise-varying trailing edges[J]. Journal of Fluid Mechanics, 2018, 849: 448–466. doi: 10.1017/jfm.2018.431
|
[6] |
GRUBER M. Airfoil noise reduction by edge treatments[D]. Southampton: University of Southampton, 2012.
|
[7] |
AVALLONE F, PRÖBSTING S, RAGNI D. Three-dimensional flow field over a trailing-edge serration and implications on broadband noise[J]. Physics of Fluids, 2016, 28(11): 117101. doi: 10.1063/1.4966633
|
[8] |
JONES L E, SANDBERG R D. Acoustic and hydrodynamic analysis of the flow around an aerofoil with trailing-edge serrations[J]. Journal of Fluid Mechanics, 2012, 706: 295–322. doi: 10.1017/jfm.2012.254
|
[9] |
AVALLONE F, VAN DER VELDEN W C P, RAGNI D, et al. Noise reduction mechanisms of sawtooth and combed-sawtooth trailing-edge serrations[J]. Journal of Fluid Mechanics, 2018, 848: 560–591. doi: 10.1017/jfm.2018.377
|
[10] |
TIAN H P, LYU B S. Prediction of broadband noise from rotating blade elements with serrated trailing edges[J]. Physics of Fluids, 2022, 34(8): 085109. doi: 10.1063/5.0094423
|
[11] |
WEI Y L, QIAN Y J, BIAN S Y, et al. Experimental study of the performance of a propeller with trailing-edge serrations[J]. Acoustics Australia, 2021, 49(2): 305–316. doi: 10.1007/s40857-021-00221-w
|
[12] |
YANG Y N, WANG Y, LIU Y, et al. Noise reduction and aerodynamics of isolated multi-copter rotors with serrated trailing edges during forward flight[J]. Journal of Sound and Vibration, 2020, 489: 115688. doi: 10.1016/j.jsv.2020.115688
|
[13] |
QIAO W Y, JI L, TONG F, et al. Experimental and numerical study on noise reduction mechanisms of the linear cascade with serrated trailing edge[C]//Proc of the 20th AIAA/CEAS Aeroacoustics Conference. 2014: 3349. doi: 10.2514/6.2014-3349.
|
[14] |
WANG L, LIU X M. Aeroacoustic investigation of asymmetric oblique trailing-edge serrations enlighted by owl wings[J]. Physics of Fluids, 2022, 34(1): 015113. doi: 10.1063/5.0076272
|
[15] |
ZHOU P, ZHONG S Y, LI X T, et al. Broadband trailing edge noise reduction through porous velvet-coated serrations[J]. Physics of Fluids, 2022, 34(5): 057112. doi: 10.1063/5.0089257
|
[16] |
HU Y S, WAN Z H, YE C C, et al. Noise reduction mechanisms for insert-type serrations of the NACA-0012 airfoil[J]. Journal of Fluid Mechanics, 2022, 941: A57. doi: 10.1017/jfm.2022.337
|
[17] |
HU Y S, ZHANG P J Y, WAN Z H, et al. Effects of trailing-edge serration shape on airfoil noise reduction with zero incidence angle[J]. Physics of Fluids, 2022, 34(10): 105108. doi: 10.1063/5.0108565
|
[18] |
WITHERDEN F D, FARRINGTON A M, VINCENT P E. PyFR: an open source framework for solving advection–diffusion type problems on streaming architectures using the flux reconstruction approach[J]. Computer Physics Communications, 2014, 185(11): 3028–3040. doi: 10.1016/j.cpc.2014.07.011
|
[19] |
ZHANG P J Y, WAN Z H, SUN D J. Space-time correlations of velocity in a Mach 0.9 turbulent round jet[J]. Physics of Fluids, 2019, 31(11): 115108. doi: 10.1063/1.5128424
|
[20] |
TAYLOR G I. The spectrum of turbulence[J]. Proceedings of the Royal Society of London Series A - Mathematical and Physical Sciences, 1938, 164(919): 476–490. doi: 10.1098/rspa.1938.0032
|
[21] |
HE G W, ZHANG J B. Elliptic model for space-time correlations in turbulent shear flows[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2006, 73(5 Pt 2): 055303. doi: 10.1103/PhysRevE.73.055303
|
[22] |
CHOI H, MOIN P. On the space-time characteristics of wall-pressure fluctuations[J]. Physics of Fluids A: Fluid Dynamics, 1990, 2(8): 1450–1460. doi: 10.1063/1.857593
|
[1] | HE Chao, XIE Fei, XU Xiaobing, CHEN Lei. Design and application of launch device for free-flight test in hypersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(5): 121-127. DOI: 10.11729/syltlx20200038 |
[2] | XIAO Heng, GU Yunsong, SUN Zhijun. Unsteady surface pressure measurements of standard spinning missile model in supersonic flow[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 62-67. DOI: 10.11729/syltlx20190100 |
[3] | Ma Jun, Song Jin, Liu Bei, Qin Sanchun, Xiong Jianjun, Jiang Min. Design and implementationfor full field of view measurement scheme in vertical wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(6): 66-70, 104. DOI: 10.11729/syltlx20160087 |
[4] | HUANG Hui-ming, LIU Xiang-yong, MA Jun, SONG Jin. The improvement method in 3-D measurement of airplane free-spin[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(2): 77-81. DOI: 10.3969/j.issn.1672-9897.2013.02.015 |
[5] | ZHU Ming-hong, YANG Hong-sen, WANG Xun-nian, WU Hai-ying, JIANG Min, MA Jun. Improvements and validation of spin test techniques in vertical wind-tunnel[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(5): 94-98. DOI: 10.3969/j.issn.1672-9897.2011.05.019 |
[6] | YUAN Hong-gang, LI Jin-xue, YANG Yong-dong, WANG Tian-hong. Test investigation of wake measurement for rotors in forward flight[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(4): 29-32. DOI: 10.3969/j.issn.1672-9897.2010.04.007 |
[7] | ZHU Ming-hong, WANG Xun-nian, LI Bao, LIU Yi-xin, JIANG Min, MA Jun, ZHANG Jun. Free-spin test technique in Φ5m vertical wind tunnel in CARDC[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(3): 49-53. DOI: 10.3969/j.issn.1672-9897.2007.03.010 |
[8] | The survey of the inertia moment in free flight models[J]. Journal of Experiments in Fluid Mechanics, 2002, 16(2): 88-91. DOI: 10.3969/j.issn.1672-9897.2002.02.017 |
[9] | LI Yong-fu. Spin prediction through all process of the aircraft development[J]. Journal of Experiments in Fluid Mechanics, 1999, 13(4): 32-35. DOI: 10.3969/j.issn.1672-9897.1999.04.007 |
[10] | Li Yongfu. The Test Technique of Spin for Vertical Wind Tunnel[J]. Journal of Experiments in Fluid Mechanics, 1999, 13(1): 13-18. DOI: 10.3969/j.issn.1672-9897.1999.01.002 |
1. |
刘宇,秦梦婕,王强,易贤. 含盐海水飞沫的结冰风洞试验相似准则. 航空学报. 2023(S2): 303-313 .
![]() | |
2. |
刘宇,易贤,王强,李维浩. 结冰风洞试验混合相似转换方法及其验证. 空气动力学学报. 2021(02): 176-183 .
![]() | |
3. |
沈贺,魏搏,姜禹,郭文峰,李岩. 叶片数对垂直轴风力机结冰分布影响风洞试验. 实验流体力学. 2021(04): 67-72 .
![]() | |
4. |
张丽芬,葛鑫,张斐,刘振侠,马栋,吕维进. 旋转帽罩结冰相似准则的冰风洞试验研究. 实验流体力学. 2021(04): 52-59 .
![]() | |
5. |
田永强,蔡晋生,张正科,杨磊磊. 结冰风洞实验中的相似理论. 北京航空航天大学学报. 2020(02): 359-370 .
![]() | |
6. |
李维浩,李伟斌,易贤,王应宇. 考虑动力学效应的结冰试验相似准则修正方法. 实验流体力学. 2020(03): 97-103 .
![]() | |
7. |
施红,王均毅,陈佳敏,丁媛媛,张彤. 过冷大水滴条件下结冰相似准则. 航空动力学报. 2019(05): 1101-1110 .
![]() | |
8. |
马军林,肖京平,王桥,胡丽燕,王强. 飞机结冰相似准则研究进展. 飞行力学. 2019(04): 1-7 .
![]() | |
9. |
杨倩,董威,郭之强,郑梅. 涡扇发动机短舱结冰试验相似方法. 航空动力学报. 2019(09): 1988-2000 .
![]() | |
10. |
杜雁霞,李明,桂业伟,王梓旭. 飞机结冰热力学行为研究综述. 航空学报. 2017(02): 30-41 .
![]() |