HU Y S, ZHANG P J Y, ZHUANG G H, et al. Noise control of serrated trailing edge airfoil under small incidence angle[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(1): 28-36. DOI: 10.11729/syltlx20230031
Citation: HU Y S, ZHANG P J Y, ZHUANG G H, et al. Noise control of serrated trailing edge airfoil under small incidence angle[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(1): 28-36. DOI: 10.11729/syltlx20230031

Noise control of serrated trailing edge airfoil under small incidence angle

More Information
  • Received Date: March 13, 2023
  • Revised Date: June 27, 2023
  • Accepted Date: August 10, 2023
  • Available Online: March 17, 2024
  • Inspired by the silent flight capability of owls, the serrated trailing edge design is considered as an effective method to reduce the turbulent boundary layer-trailing edge interference noise. In this study, the near-field flow and noise characteristics of a NACA 0012 airfoil with additional serrated trailing edges are investigated in detail using an implicit large eddy simulation approach with Reynolds number Re = 9.6×104, far-field Mach number Ma = 0.1631, and angle of attack α=4. The simulation adopts unstructured grids with 70 million degrees of freedom. In this particular calculation, a small sawtooth-shaped rough strip is added to the airfoil surface to facilitate the fast transition to turbulence for both straight and serrated trailing edge cases. At an angle of attack of 4°, an increase in noise radiation is observed with respect to that at an angle of attack of 0°, with a deflection of the primary radiation direction and a noise reduction of about 2.5 dB in this direction. The flow analysis shows that the sawtooth induces the regularly distributed vortex pair structures at its sides, which facilitates noise reduction in the far-field. The analysis of the wall pressure fluctuation shows that the sawtooth mainly changes the space-time correlation properties near the trailing edges, and the space-time correlation properties of the pressure cannot be described by the existing velocity-based Taylor or elliptical correlation models. In addition, the sawtooth suppresses the noise radiation while causing some loss to the aerodynamic performance of the airfoil.
  • [1]
    HOWE M S. Aerodynamic noise of a serrated trailing edge[J]. Journal of Fluids and Structures, 1991, 5(1): 33–45. doi: 10.1016/0889-9746(91)80010-B
    [2]
    LYU B, AZARPEYVAND M, SINAYOKO S. Prediction of noise from serrated trailing edges[J]. Journal of Fluid Mechanics, 2016, 793: 556–588. doi: 10.1017/jfm.2016.132
    [3]
    AMIET R K. Noise due to turbulent flow past a trailing edge[J]. Journal of Sound and Vibration, 1976, 47(3): 387–393. doi: 10.1016/0022-460X(76)90948-2
    [4]
    HUANG X. Theoretical model of acoustic scattering from a flat plate with serrations[J]. Journal of Fluid Mechanics, 2017, 819: 228–257. doi: 10.1017/jfm.2017.176
    [5]
    AYTON L J. Analytic solution for aerodynamic noise generated by plates with spanwise-varying trailing edges[J]. Journal of Fluid Mechanics, 2018, 849: 448–466. doi: 10.1017/jfm.2018.431
    [6]
    GRUBER M. Airfoil noise reduction by edge treatments[D]. Southampton: University of Southampton, 2012.
    [7]
    AVALLONE F, PRÖBSTING S, RAGNI D. Three-dimensional flow field over a trailing-edge serration and implications on broadband noise[J]. Physics of Fluids, 2016, 28(11): 117101. doi: 10.1063/1.4966633
    [8]
    JONES L E, SANDBERG R D. Acoustic and hydrodynamic analysis of the flow around an aerofoil with trailing-edge serrations[J]. Journal of Fluid Mechanics, 2012, 706: 295–322. doi: 10.1017/jfm.2012.254
    [9]
    AVALLONE F, VAN DER VELDEN W C P, RAGNI D, et al. Noise reduction mechanisms of sawtooth and combed-sawtooth trailing-edge serrations[J]. Journal of Fluid Mechanics, 2018, 848: 560–591. doi: 10.1017/jfm.2018.377
    [10]
    TIAN H P, LYU B S. Prediction of broadband noise from rotating blade elements with serrated trailing edges[J]. Physics of Fluids, 2022, 34(8): 085109. doi: 10.1063/5.0094423
    [11]
    WEI Y L, QIAN Y J, BIAN S Y, et al. Experimental study of the performance of a propeller with trailing-edge serrations[J]. Acoustics Australia, 2021, 49(2): 305–316. doi: 10.1007/s40857-021-00221-w
    [12]
    YANG Y N, WANG Y, LIU Y, et al. Noise reduction and aerodynamics of isolated multi-copter rotors with serrated trailing edges during forward flight[J]. Journal of Sound and Vibration, 2020, 489: 115688. doi: 10.1016/j.jsv.2020.115688
    [13]
    QIAO W Y, JI L, TONG F, et al. Experimental and numerical study on noise reduction mechanisms of the linear cascade with serrated trailing edge[C]//Proc of the 20th AIAA/CEAS Aeroacoustics Conference. 2014: 3349. doi: 10.2514/6.2014-3349.
    [14]
    WANG L, LIU X M. Aeroacoustic investigation of asymmetric oblique trailing-edge serrations enlighted by owl wings[J]. Physics of Fluids, 2022, 34(1): 015113. doi: 10.1063/5.0076272
    [15]
    ZHOU P, ZHONG S Y, LI X T, et al. Broadband trailing edge noise reduction through porous velvet-coated serrations[J]. Physics of Fluids, 2022, 34(5): 057112. doi: 10.1063/5.0089257
    [16]
    HU Y S, WAN Z H, YE C C, et al. Noise reduction mechanisms for insert-type serrations of the NACA-0012 airfoil[J]. Journal of Fluid Mechanics, 2022, 941: A57. doi: 10.1017/jfm.2022.337
    [17]
    HU Y S, ZHANG P J Y, WAN Z H, et al. Effects of trailing-edge serration shape on airfoil noise reduction with zero incidence angle[J]. Physics of Fluids, 2022, 34(10): 105108. doi: 10.1063/5.0108565
    [18]
    WITHERDEN F D, FARRINGTON A M, VINCENT P E. PyFR: an open source framework for solving advection–diffusion type problems on streaming architectures using the flux reconstruction approach[J]. Computer Physics Communications, 2014, 185(11): 3028–3040. doi: 10.1016/j.cpc.2014.07.011
    [19]
    ZHANG P J Y, WAN Z H, SUN D J. Space-time correlations of velocity in a Mach 0.9 turbulent round jet[J]. Physics of Fluids, 2019, 31(11): 115108. doi: 10.1063/1.5128424
    [20]
    TAYLOR G I. The spectrum of turbulence[J]. Proceedings of the Royal Society of London Series A - Mathematical and Physical Sciences, 1938, 164(919): 476–490. doi: 10.1098/rspa.1938.0032
    [21]
    HE G W, ZHANG J B. Elliptic model for space-time correlations in turbulent shear flows[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2006, 73(5 Pt 2): 055303. doi: 10.1103/PhysRevE.73.055303
    [22]
    CHOI H, MOIN P. On the space-time characteristics of wall-pressure fluctuations[J]. Physics of Fluids A: Fluid Dynamics, 1990, 2(8): 1450–1460. doi: 10.1063/1.857593
  • Related Articles

    [1]HE Chao, XIE Fei, XU Xiaobing, CHEN Lei. Design and application of launch device for free-flight test in hypersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(5): 121-127. DOI: 10.11729/syltlx20200038
    [2]XIAO Heng, GU Yunsong, SUN Zhijun. Unsteady surface pressure measurements of standard spinning missile model in supersonic flow[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 62-67. DOI: 10.11729/syltlx20190100
    [3]Ma Jun, Song Jin, Liu Bei, Qin Sanchun, Xiong Jianjun, Jiang Min. Design and implementationfor full field of view measurement scheme in vertical wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(6): 66-70, 104. DOI: 10.11729/syltlx20160087
    [4]HUANG Hui-ming, LIU Xiang-yong, MA Jun, SONG Jin. The improvement method in 3-D measurement of airplane free-spin[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(2): 77-81. DOI: 10.3969/j.issn.1672-9897.2013.02.015
    [5]ZHU Ming-hong, YANG Hong-sen, WANG Xun-nian, WU Hai-ying, JIANG Min, MA Jun. Improvements and validation of spin test techniques in vertical wind-tunnel[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(5): 94-98. DOI: 10.3969/j.issn.1672-9897.2011.05.019
    [6]YUAN Hong-gang, LI Jin-xue, YANG Yong-dong, WANG Tian-hong. Test investigation of wake measurement for rotors in forward flight[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(4): 29-32. DOI: 10.3969/j.issn.1672-9897.2010.04.007
    [7]ZHU Ming-hong, WANG Xun-nian, LI Bao, LIU Yi-xin, JIANG Min, MA Jun, ZHANG Jun. Free-spin test technique in Φ5m vertical wind tunnel in CARDC[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(3): 49-53. DOI: 10.3969/j.issn.1672-9897.2007.03.010
    [8]The survey of the inertia moment in free flight models[J]. Journal of Experiments in Fluid Mechanics, 2002, 16(2): 88-91. DOI: 10.3969/j.issn.1672-9897.2002.02.017
    [9]LI Yong-fu. Spin prediction through all process of the aircraft development[J]. Journal of Experiments in Fluid Mechanics, 1999, 13(4): 32-35. DOI: 10.3969/j.issn.1672-9897.1999.04.007
    [10]Li Yongfu. The Test Technique of Spin for Vertical Wind Tunnel[J]. Journal of Experiments in Fluid Mechanics, 1999, 13(1): 13-18. DOI: 10.3969/j.issn.1672-9897.1999.01.002
  • Cited by

    Periodical cited type(10)

    1. 刘宇,秦梦婕,王强,易贤. 含盐海水飞沫的结冰风洞试验相似准则. 航空学报. 2023(S2): 303-313 .
    2. 刘宇,易贤,王强,李维浩. 结冰风洞试验混合相似转换方法及其验证. 空气动力学学报. 2021(02): 176-183 .
    3. 沈贺,魏搏,姜禹,郭文峰,李岩. 叶片数对垂直轴风力机结冰分布影响风洞试验. 实验流体力学. 2021(04): 67-72 . 本站查看
    4. 张丽芬,葛鑫,张斐,刘振侠,马栋,吕维进. 旋转帽罩结冰相似准则的冰风洞试验研究. 实验流体力学. 2021(04): 52-59 . 本站查看
    5. 田永强,蔡晋生,张正科,杨磊磊. 结冰风洞实验中的相似理论. 北京航空航天大学学报. 2020(02): 359-370 .
    6. 李维浩,李伟斌,易贤,王应宇. 考虑动力学效应的结冰试验相似准则修正方法. 实验流体力学. 2020(03): 97-103 . 本站查看
    7. 施红,王均毅,陈佳敏,丁媛媛,张彤. 过冷大水滴条件下结冰相似准则. 航空动力学报. 2019(05): 1101-1110 .
    8. 马军林,肖京平,王桥,胡丽燕,王强. 飞机结冰相似准则研究进展. 飞行力学. 2019(04): 1-7 .
    9. 杨倩,董威,郭之强,郑梅. 涡扇发动机短舱结冰试验相似方法. 航空动力学报. 2019(09): 1988-2000 .
    10. 杜雁霞,李明,桂业伟,王梓旭. 飞机结冰热力学行为研究综述. 航空学报. 2017(02): 30-41 .

    Other cited types(8)

Catalog

    Article Metrics

    Article views (908) PDF downloads (62) Cited by(18)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close