WANG J,ZHANG L,LI B B,et al. Experimental study of passive control of jet deflection on wing upper surface[J]. Journal of Experiments in Fluid Mechanics, 2021,35(6):79-85.. DOI: 10.11729/syltlx20210027
Citation: WANG J,ZHANG L,LI B B,et al. Experimental study of passive control of jet deflection on wing upper surface[J]. Journal of Experiments in Fluid Mechanics, 2021,35(6):79-85.. DOI: 10.11729/syltlx20210027

Experimental study of passive control of jet deflection on wing upper surface

More Information
  • Received Date: March 17, 2021
  • Revised Date: May 19, 2021
  • Available Online: December 09, 2021
  • The effect of flap shape on jet deflection on the upper surface of the wing is studied by the static thrust experiment. On this basis, the jet deflection is passively controlled by the vortex generator, and the effects of the installation position, installation angle and height of the vortex generator on the jet deflection performance are studied. The results show that the jet deflection angle reaches the maximum when the flap deflection angle is 30° and increases with the increase of the flap radius. The use of vortex generators helps to promote the jet adhesion and to increase the jet deflection angle. Its height and installation angle are the key parameters that affect the deflection performance of the jet.
  • [1]
    战培国,程娅红,赵昕. 主动流动控制技术研究[J]. 航空科学技术,2010,21(5):2-6. DOI: 10.3969/j.issn.1007-5453.2010.05.001

    ZHAN P G,CHENG Y H,ZHAO X. A review of active flow control technology[J]. Aeronautical Science and Technology,2010,21(5):2-6. doi: 10.3969/j.issn.1007-5453.2010.05.001
    [2]
    HARRISON N, VASSBERG J, DEHAAN M, et al. The design and test of a swept wing upper surface blowing concept[C]// Proc of the 51st AIAA Aerospace Sciences Meeting. 2013. doi: 10.2514/6.2013-1102
    [3]
    YADLIN Y, SHMILOVICH A. Lift enhancement for upper surface blowing airplanes[C]//Proc of the 31st AIAA Applied Aerodynamics Conference. 2013. doi: 10.2514/6.2013-2796
    [4]
    JENNETTE T L,AHUJA K K. Noise source location and scaling of subsonic upper-surface blowing[J]. International Journal of Aeroa-coustics,2020,19(3-5):191-206. doi: 10.1177/1475472x20930652
    [5]
    YAMATO H,OKADA N,BANDO T. Flight test of the Japanese up-per surface blowing STOL experimental aircraft ASKA[J]. Journal of Aircraft,1991,28(10):630-637. doi: 10.2514/3.46075
    [6]
    RUMSEY C L,NISHINO T. Numerical study comparing RANS and LES approaches on a circulation control airfoil[J]. International Journal of Heat and Fluid Flow,2011,32(5):847-864. doi: 10.1016/j.ijheatfluidflow.2011.06.011
    [7]
    WIMPRESS J K. Upper surface blowing technology as applied to the YC-14 airplane[C]// Proc of the SAE Technical Paper Series. 1973. doi: 10.4271/730916
    [8]
    赵国昌,邢仕廷,宋丽萍,等. 机翼上表面吹气动力增升简化模型[J]. 飞行力学,2018,36(4):39-43.

    ZHAO G C,XING S T,SONG L P,et al. Simplified model of wing upper surface blowing dynamic lift enhancement[J]. Flight Dyna-mics,2018,36(4):39-43.
    [9]
    XIAO T H,ZHU Z H,DENG S H,et al. Effects of nozzle geometry and active blowing on lift enhancement for upper surface blowing configuration[J]. Aerospace Science and Technology,2021,111:106536. doi: 10.1016/j.ast.2021.106536
    [10]
    ZHU Z H, XIAO T H, ZHAI C, et al. Numerical study on lift enhancement for upper surface blowing system with powered turbofan engine[C]//Proc of the AIAA Aviation 2019 Forum. 2019. doi: 10.2514/6.2019-3167
    [11]
    章荣平,王勋年,黄勇,等. 低速风洞全模TPS试验空气桥的设计与优化[J]. 实验流体力学,2012,26(6):48-52. DOI: 10.3969/j.issn.1672-9897.2012.06.011

    ZHANG R P,WANG X N,HUANG Y,et al. Design and optimi-zation of the air bridge for low speed full-span TPS test[J]. Journal of Experiments in Fluid Mechanics,2012,26(6):48-52. doi: 10.3969/j.issn.1672-9897.2012.06.011
    [12]
    巫朝君,胡卜元,李东,等. 扁平融合式飞机整体式进/排气试验的推/阻校准方法[J]. 实验流体力学,2019,33(5):88-93. DOI: 10.11729/syltlx20180141

    WU C J,HU B Y,LI D,et al. Thrust/drag calibrations for integral inlet and jet testing on a aircraft with blended wing/body[J]. Journal of Experiments in Fluid Mechanics,2019,33(5):88-93. doi: 10.11729/syltlx20180141
    [13]
    郝礼书,乔志德,宋文萍. 涡流发生器布局方式对翼型失速流动控制效果影响的实验研究[J]. 西北工业大学学报,2011,29(4):524-528. DOI: 10.3969/j.issn.1000-2758.2011.04.005

    HAO L S,QIAO Z D,SONG W P. Experimentally studying effects of different layouts of vortex generator on controlling stall flow over airfoil[J]. Journal of Northwestern Polytechnical University,2011,29(4):524-528. doi: 10.3969/j.issn.1000-2758.2011.04.005
    [14]
    李宝山,龚玉祥,张建军,等. 涡流发生器高度和长度对风力机翼型的影响研究[J]. 机电工程技术,2020,49(11):148-150. DOI: 10.3969/j.issn.1009-9492.2020.11.044

    LI B S,GONG Y X,ZHANG J J,et al. Research on the influence of height and length of vortex generators on wind turbine airfoil[J]. Mechanical & Electrical Engineering Technology,2020,49(11):148-150. doi: 10.3969/j.issn.1009-9492.2020.11.044
  • Cited by

    Periodical cited type(0)

    Other cited types(2)

Catalog

    Article Metrics

    Article views (409) PDF downloads (28) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日