Citation: | WANG J,ZHANG L,LI B B,et al. Experimental study of passive control of jet deflection on wing upper surface[J]. Journal of Experiments in Fluid Mechanics, 2021,35(6):79-85.. DOI: 10.11729/syltlx20210027 |
[1] |
战培国,程娅红,赵昕. 主动流动控制技术研究[J]. 航空科学技术,2010,21(5):2-6. DOI: 10.3969/j.issn.1007-5453.2010.05.001
ZHAN P G,CHENG Y H,ZHAO X. A review of active flow control technology[J]. Aeronautical Science and Technology,2010,21(5):2-6. doi: 10.3969/j.issn.1007-5453.2010.05.001
|
[2] |
HARRISON N, VASSBERG J, DEHAAN M, et al. The design and test of a swept wing upper surface blowing concept[C]// Proc of the 51st AIAA Aerospace Sciences Meeting. 2013. doi: 10.2514/6.2013-1102
|
[3] |
YADLIN Y, SHMILOVICH A. Lift enhancement for upper surface blowing airplanes[C]//Proc of the 31st AIAA Applied Aerodynamics Conference. 2013. doi: 10.2514/6.2013-2796
|
[4] |
JENNETTE T L,AHUJA K K. Noise source location and scaling of subsonic upper-surface blowing[J]. International Journal of Aeroa-coustics,2020,19(3-5):191-206. doi: 10.1177/1475472x20930652
|
[5] |
YAMATO H,OKADA N,BANDO T. Flight test of the Japanese up-per surface blowing STOL experimental aircraft ASKA[J]. Journal of Aircraft,1991,28(10):630-637. doi: 10.2514/3.46075
|
[6] |
RUMSEY C L,NISHINO T. Numerical study comparing RANS and LES approaches on a circulation control airfoil[J]. International Journal of Heat and Fluid Flow,2011,32(5):847-864. doi: 10.1016/j.ijheatfluidflow.2011.06.011
|
[7] |
WIMPRESS J K. Upper surface blowing technology as applied to the YC-14 airplane[C]// Proc of the SAE Technical Paper Series. 1973. doi: 10.4271/730916
|
[8] |
赵国昌,邢仕廷,宋丽萍,等. 机翼上表面吹气动力增升简化模型[J]. 飞行力学,2018,36(4):39-43.
ZHAO G C,XING S T,SONG L P,et al. Simplified model of wing upper surface blowing dynamic lift enhancement[J]. Flight Dyna-mics,2018,36(4):39-43.
|
[9] |
XIAO T H,ZHU Z H,DENG S H,et al. Effects of nozzle geometry and active blowing on lift enhancement for upper surface blowing configuration[J]. Aerospace Science and Technology,2021,111:106536. doi: 10.1016/j.ast.2021.106536
|
[10] |
ZHU Z H, XIAO T H, ZHAI C, et al. Numerical study on lift enhancement for upper surface blowing system with powered turbofan engine[C]//Proc of the AIAA Aviation 2019 Forum. 2019. doi: 10.2514/6.2019-3167
|
[11] |
章荣平,王勋年,黄勇,等. 低速风洞全模TPS试验空气桥的设计与优化[J]. 实验流体力学,2012,26(6):48-52. DOI: 10.3969/j.issn.1672-9897.2012.06.011
ZHANG R P,WANG X N,HUANG Y,et al. Design and optimi-zation of the air bridge for low speed full-span TPS test[J]. Journal of Experiments in Fluid Mechanics,2012,26(6):48-52. doi: 10.3969/j.issn.1672-9897.2012.06.011
|
[12] |
巫朝君,胡卜元,李东,等. 扁平融合式飞机整体式进/排气试验的推/阻校准方法[J]. 实验流体力学,2019,33(5):88-93. DOI: 10.11729/syltlx20180141
WU C J,HU B Y,LI D,et al. Thrust/drag calibrations for integral inlet and jet testing on a aircraft with blended wing/body[J]. Journal of Experiments in Fluid Mechanics,2019,33(5):88-93. doi: 10.11729/syltlx20180141
|
[13] |
郝礼书,乔志德,宋文萍. 涡流发生器布局方式对翼型失速流动控制效果影响的实验研究[J]. 西北工业大学学报,2011,29(4):524-528. DOI: 10.3969/j.issn.1000-2758.2011.04.005
HAO L S,QIAO Z D,SONG W P. Experimentally studying effects of different layouts of vortex generator on controlling stall flow over airfoil[J]. Journal of Northwestern Polytechnical University,2011,29(4):524-528. doi: 10.3969/j.issn.1000-2758.2011.04.005
|
[14] |
李宝山,龚玉祥,张建军,等. 涡流发生器高度和长度对风力机翼型的影响研究[J]. 机电工程技术,2020,49(11):148-150. DOI: 10.3969/j.issn.1009-9492.2020.11.044
LI B S,GONG Y X,ZHANG J J,et al. Research on the influence of height and length of vortex generators on wind turbine airfoil[J]. Mechanical & Electrical Engineering Technology,2020,49(11):148-150. doi: 10.3969/j.issn.1009-9492.2020.11.044
|
重要公告
www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。
《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。
相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。
请广大读者、作者相互转告,广为宣传!
感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!
《实验流体力学》编辑部
2021年8月13日