LI Weihao, LI Weibin, YI Xian, WANG Yingyu. A correction method of icing testing scaling law with dynamic effects[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(3): 97-103. DOI: 10.11729/syltlx20190166
Citation: LI Weihao, LI Weibin, YI Xian, WANG Yingyu. A correction method of icing testing scaling law with dynamic effects[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(3): 97-103. DOI: 10.11729/syltlx20190166

A correction method of icing testing scaling law with dynamic effects

More Information
  • Received Date: December 08, 2019
  • Revised Date: January 04, 2020
  • The icing scaling law is an important theoretical method for converting flight conditions into test conditions. But existing icing scaling laws are mostly based on small droplets, which can cause large errors when applied to scaling transformations of large droplets. In response to this situation, research on icing scaling law considering the dynamics of droplets was carried out. Firstly, based on the ONERA scaling laws, the scaling parameters of the droplet deformation/breakup and splash were incorporated, and the modified icing scaling law was proposed. Secondly, based on these two scaling laws, the numerical simulation method was used to calculate the collection coefficient before and after the correction. The validity of the correction method was verified. Finally, the variation of the test parameters obtained by the two correction methods with the size reduction ratio was analyzed. The application of the scaling law in the icing test was given. The results show that the proposed method improves the coincidence of the local collection coefficient and reduces the average error of the collection coefficient and the impact limit. In addition, the scaling test parameters are within the design range of the icing wind tunnel. These correction methods can provide guidance for scaling transformations in supercooled large droplets ice wind tunnel test.
  • [1]
    王建涛, 易贤, 肖中云, 等. ARJ21-700飞机冰脱落数值模拟[J].空气动力学学报, 2013, 31(4):430-436. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201304004

    WANG J T, YI X, XIAO Z Y, et al. Numerical simulation of ice shedding from ARJ21-700[J]. Acta Aerodynamica Sinica, 2013, 31(4):430-436. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201304004
    [2]
    高郭池, 丁丽, 李保良, 等.气动除冰类飞机结冰风洞试验适航审定技术[J].实验流体力学, 2019, 33(2):85-94. http://www.syltlx.com/CN/abstract/abstract11174.shtml

    GAO G C, DING L, LI B L, et al. Airworthiness certification technology about icing wind tunnel test for pneumatic de-icing aircraft[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(2):85-94. http://www.syltlx.com/CN/abstract/abstract11174.shtml
    [3]
    RUFF G. Verification and application of the icing scaling equations[R]. AIAA 1986-481, 1986.
    [4]
    KIND R J. Scaling of icing tests:a review of recent progress[J]. AIAA Journal, 2003, 41(8):1421-1428. DOI: 10.2514-2.2120/
    [5]
    ANDERSON D N, TSAO J C. Overview of icing physics relevant to scaling[R]. SAE Technical Paper 2003-01-2130, 2003.
    [6]
    VILLEDIEU P, TRONTIN P, GUFFOND D, et al. SLD Lagrangian modeling and capability assessment in the frame of ONERA 3D icing suite[R]. AIAA-2012-3132, 2012.
    [7]
    ANDERSON D N. A preliminary study of ice-accretion scaling for SLD conditions[R]. AIAA-2002-0521, 2002.
    [8]
    马军林, 肖京平, 王桥, 等.飞机结冰相似准则研究进展[J].飞行力学, 2019, 37(4):1-7. http://d.old.wanfangdata.com.cn/Periodical/fxlx201904001

    MA J L, XIAO J P, WANG Q, et al. Advances in the study of aircraft icing similarity criteria[J]. Flight Dynamics, 2019, 37(4):1-7. http://d.old.wanfangdata.com.cn/Periodical/fxlx201904001
    [9]
    ANDERSON D N, FEO A. Ice-accretion scaling using water-film thickness parameters[R]. AIAA-2002-0522, 2002.
    [10]
    ANDERSON D N, TSAO J C. Additional results of ice-accretion scaling at SLD conditions[R]. AIAA-2003-390, 2003.
    [11]
    TSAO J C. Additional results of glaze icing scaling in SLD conditions[R]. AIAA-2016-3278, 2016.
    [12]
    周志宏, 易贤, 桂业伟, 等.考虑水滴动力学效应的结冰试验相似准则[J].实验流体力学, 2016, 30(2):20-25. http://www.syltlx.com/CN/abstract/abstract10912.shtml

    ZHOU Z H, YI X, GUI Y W, et al. Icing scaling law with the dynamic effects of water droplets[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(2):20-25. http://www.syltlx.com/CN/abstract/abstract10912.shtml
    [13]
    施红, 王均毅, 陈佳敏, 等.过冷大水滴条件下结冰相似准则[J].航空动力学报, 2019, 34(5):1101-1110. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201905017

    SHI H, WANG J Y, CHEN J M, et al. Icing scaling law at supercooled large droplet conditions[J]. Journal of Aerospace Power, 2019, 34(5):1101-1110. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201905017
    [14]
    易贤.飞机积冰的数值计算与积冰试验相似准则研究[D].四川绵阳: 中国空气动力研究与发展中心, 2007. http://cdmd.cnki.com.cn/Article/CDMD-90113-2007189443.htm

    YI X. Numerical computation of aircraft icing and study on icing test scaling law[D]. Mianyang Sichuan: China Aerodynamics Research and Development Center, 2007. http://cdmd.cnki.com.cn/Article/CDMD-90113-2007189443.htm
    [15]
    李维浩, 易贤, 李伟斌, 等.过冷大水滴变形与破碎的影响因素[J].航空学报, 2018, 39(12):81-89. http://d.old.wanfangdata.com.cn/Periodical/hkxb201812007

    LI W H, YI X, LI W B, et al. Influence factors on deformation and breakup of supercooled large droplets[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12):81-89. http://d.old.wanfangdata.com.cn/Periodical/hkxb201812007
    [16]
    LI W H, YI X, LI W B, et al. Influences of Multi-factors on SLD Splashing Characteristics[C]//Proc of 2018 Asia-Pacific Interna-tional Symposium on Aerospace Technology. 2018.
  • Related Articles

    [1]DENG Haodong, XIA Tianyu, DONG Hao, CHENG Keming. Experimental study on the effect of rough surface on aerodynamic characteristics and flow field of low Reynolds number airfoil[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20230032
    [2]LUO Changtong, HU Zongmin, LIU Yunfeng, JIANG Zonglin. Research progress on ground-to-flight correlation of aerodynamic force and heating data from hypersonic wind tunnels[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(3): 78-89. DOI: 10.11729/syltlx20200006
    [3]Zhang Hui, Fan Litao. Correlation analysis of large low speed wind tunnel test on CHN-T1 calibration model[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 106-111. DOI: 10.11729/syltlx20180046
    [4]Bian Rong, Lou Wenjuan, Li Hang, Zhang Ligang, Zhao Xiashuang. Research on aerodynamic forces of a cantilevered circular cylinder in a laminar flow and a uniform turbulent flow[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 55-60. DOI: 10.11729/syltlx20180103
    [5]He Yuanyuan, Wu Yingchuan, Zhang Xiaoqing, Lin Qi. Analysis of data correlation between combustion heated impulse facility and hypersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(3): 64-68. DOI: 10.11729/syltlx20180011
    [6]Wu Yingchuan, He Yuanyuan, Zhang Xiaoqing, Lin Qi, Le Jialing. Analysis of data correlation between impulse and continuous combustion heated facilities[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(3): 58-63. DOI: 10.11729/syltlx20180008
    [7]Li Zhengnong, Li Hongyi, Luo Diefeng, Pan Yueyue. Study of the correlation between the measured wind field and wind pressure on a high-rise building[J]. Journal of Experiments in Fluid Mechanics, 2015, (4): 32-40. DOI: 10.11729/syltlx20140125
    [8]Xu Ziran, Zhou Qi, Zhu Ledong. Identification of aerodynamic admittances by considering the effect of incomplete span-wise correlation of buffeting forces on sectional model[J]. Journal of Experiments in Fluid Mechanics, 2014, (5): 39-46. DOI: 10.11729/syltlx20130113
    [9]LI Zheng-nong, SONG Ke, LI Qiu-sheng, ZHI Lun-hai, WU Jiu-rong. Correlation analysis of wind characteristic and wind-induced response of CITIC Plaza[J]. Journal of Experiments in Fluid Mechanics, 2009, 23(4): 21-27. DOI: 10.3969/j.issn.1672-9897.2009.04.005
    [10]JIA Qu-yao, YANG Yi-nong, CHEN Nong. Contribution of Reynolds number in the dynamic aerodynamic correlation between real flight and wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(4): 91-96. DOI: 10.3969/j.issn.1672-9897.2007.04.019
  • Cited by

    Periodical cited type(10)

    1. 刘宇,秦梦婕,王强,易贤. 含盐海水飞沫的结冰风洞试验相似准则. 航空学报. 2023(S2): 303-313 .
    2. 刘宇,易贤,王强,李维浩. 结冰风洞试验混合相似转换方法及其验证. 空气动力学学报. 2021(02): 176-183 .
    3. 沈贺,魏搏,姜禹,郭文峰,李岩. 叶片数对垂直轴风力机结冰分布影响风洞试验. 实验流体力学. 2021(04): 67-72 . 本站查看
    4. 张丽芬,葛鑫,张斐,刘振侠,马栋,吕维进. 旋转帽罩结冰相似准则的冰风洞试验研究. 实验流体力学. 2021(04): 52-59 . 本站查看
    5. 田永强,蔡晋生,张正科,杨磊磊. 结冰风洞实验中的相似理论. 北京航空航天大学学报. 2020(02): 359-370 .
    6. 李维浩,李伟斌,易贤,王应宇. 考虑动力学效应的结冰试验相似准则修正方法. 实验流体力学. 2020(03): 97-103 . 本站查看
    7. 施红,王均毅,陈佳敏,丁媛媛,张彤. 过冷大水滴条件下结冰相似准则. 航空动力学报. 2019(05): 1101-1110 .
    8. 马军林,肖京平,王桥,胡丽燕,王强. 飞机结冰相似准则研究进展. 飞行力学. 2019(04): 1-7 .
    9. 杨倩,董威,郭之强,郑梅. 涡扇发动机短舱结冰试验相似方法. 航空动力学报. 2019(09): 1988-2000 .
    10. 杜雁霞,李明,桂业伟,王梓旭. 飞机结冰热力学行为研究综述. 航空学报. 2017(02): 30-41 .

    Other cited types(8)

Catalog

    Article Metrics

    Article views (233) PDF downloads (15) Cited by(18)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close