LUO Changtong, HU Zongmin, LIU Yunfeng, JIANG Zonglin. Research progress on ground-to-flight correlation of aerodynamic force and heating data from hypersonic wind tunnels[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(3): 78-89. DOI: 10.11729/syltlx20200006
Citation: LUO Changtong, HU Zongmin, LIU Yunfeng, JIANG Zonglin. Research progress on ground-to-flight correlation of aerodynamic force and heating data from hypersonic wind tunnels[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(3): 78-89. DOI: 10.11729/syltlx20200006

Research progress on ground-to-flight correlation of aerodynamic force and heating data from hypersonic wind tunnels

More Information
  • Received Date: December 16, 2019
  • Revised Date: February 19, 2020
  • Hypersonic flow characteristics such as high temperature real gas effect, viscous interference effect, Mach number effect and scale effect, do not follow the similarity simulation criterion of experimental gas dynamics, which makes the hypersonic flow phenomenon beyond the range that can be accurately predicted by the classical gas dynamics theory. How to use the ground experimental data to predict the flight state, that is, the problem of ground-to-flight (G2F) correlation, is the key scientific problem that restricts the development of new aerospace vehicles. This paper summarizes the latest research progress of G2F correlation, and focuses on the multi-space correlation theory and correlation method of intelligent functional optimization. According to the theory, from a high-dimensional point of view, the experimental results of different wind tunnels are intrinsically related, and the flight test can be regarded as an ideal wind tunnel experiment. Based on the experimental data of wind tunnel groups (different types of wind tunnels which can simulate different parameter sections), using a specialized intelligent learning algorithm in functional space, the correlation method is performed by starting from the high-dimensional full parameter space. And then by carrying out a series of dimension reduction and adaptive space transformation, the invariant law is automatically deduced that different wind tunnels abide by together, so as to get a formula for G2F correlation. The results of verification examples and preliminary applications show that the multi-space correlation theory and functional intelligent optimization correlation method are effective, which would be a new trend in the research of G2F correlation for hypersonic aerodynamic force and heating.
  • [1]
    ANDERSON J D. Hypersonic and high-temperature gas dynamics[M]. 2nd ed. Reston, VA:AIAA, 2006.
    [2]
    陈坚强, 张益荣, 张毅锋, 等.高超声速气动力数据天地相关性研究综述[J].空气动力学学报, 2014, 32(5):587-599. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kqdlxxb201405005

    CHEN J Q, ZHANG Y R, ZHANG Y F, et al. Review of correlation analysis of aerodynamic data between flight and ground prediction for hypersonic vehicle[J]. Acta Aerodynamica Sinica, 2014, 32(5):587-599. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kqdlxxb201405005
    [3]
    BERTIN J J, CUMMINGS R M. Critical hypersonic aerother-modynamic phenomena[J]. Annual Review of Fluid Mechanics, 2006, 38(1):129-157. DOI: 10.1146/annurev.fluid.38.050304.092041
    [4]
    SALTZMAN E J, GARRIGER D E. Summary of full-scale lift and drag characteristics of the X-15 airplane[R]. NASA TN D-3343, 1966.
    [5]
    VLASOV V I, GORSHKOV A B, KOVALEV R V, et al. Thin triangular blunt-nosed plate in a viscous hypersonic flow[J]. Fluid Dynamics, 2009, 44(4):596-605. DOI: 10.1134/S0015462809040139
    [6]
    ELSENAAR A. On Reynolds number effects and simulation[R]. AGARD CP-429, 1988.
    [7]
    HAINES A B. Prediction of scale effects at transonic speeds:current practice and a gaze into the future[J]. Aeronautical Journal, 2000, 104(1039), 421-431.
    [8]
    HOWE J T. Hypervelocity atmospheric flight: real gas flow fields[R]. NASA RP-1249, 1989.
    [9]
    龚安龙, 解静, 刘晓文, 等.近空间高超声速气动力数据天地换算研究[J].工程力学, 2017, 34(10):229-238. DOI: 10.6052/j.issn.1000-4750.2016.05.0404

    GONG A L, XIE J, LIU X W, et al. Study on ground-to-flight extrapolation of near space hypersonic aerodynamic data[J]. Engineering Mechanics, 2017, 34(10):229-238. DOI: 10.6052/j.issn.1000-4750.2016.05.0404
    [10]
    NICOLÌ A, IMPERATORE B, MARINI M, et al. Ground-to-flight extrapolation of the aerodynamic coefficients of the VEGA launcher[R]. AIAA-2006-3829, 2006.
    [11]
    PETERSON J B, MANN M J, SORRELLS R B, et al. Wind-tunnel/flight correlation study of aerodynamic characteristics of a large flexible supersonic cruise airplane (XB-701). II: Extrapolation of wind-tunnel data to full-scale conditions[R]. NASA TP-1515, 1980.
    [12]
    RUFOLO G, RONCIONI P, MARINI M, et al. Post flight aerodynamic analysis of the experimental vehicle PRORA USV 1[R]. AIAA-2008-2661, 2008.
    [13]
    MORELLI E A, DELOACH R. Wind tunnel database development using modern experiment design and multivariate orthogonal functions[R]. AIAA-2003-0653, 2003.
    [14]
    DOUGLAS D P, CAROLYN M. Statistical methods for rapid aerothermal analysis and design technology: Validation[R]. NASA NAG1-02030, 2003.
    [15]
    汪清, 钱炜祺, 何开锋.导弹气动参数辨识与优化输入设计[J].宇航学报, 2008, 29(3):789-793. DOI: 10.3873/j.issn.1000-1328.2008.03.010

    WANG Q, QIAN W Q, HE K F. Aerodynamic parameter identification and optimal input design for missile[J]. Journal of Astronautics, 2008, 29(3):789-793. DOI: 10.3873/j.issn.1000-1328.2008.03.010
    [16]
    LEE J H, KIM E T, CHANG B H, et al. The accuracy of the flight derivative estimates derived from flight data[J]. International Journal of Aerospace and Mechanical Engineering, 2009, 3(10):1317-1323. https://www.researchgate.net/publication/289654115_The_accuracy_of_the_flight_derivative_estimates_derived_from_flight_data
    [17]
    NORGAARD M, JORGENSEN C, ROSS J. Neural network prediction of new aircraft design coefficients[R]. NASA Technical Memorandum 112197, 1997.
    [18]
    RAJKUMAR T, BARDINA J. Prediction of aerodynamic coefficients using neural networks for sparse data[C]//Proceedings of the 15th International Florida Artificial Intelligence Research Society Conference.2002.
    [19]
    MALMATHANRAJ R, TYSON T F. Characteristic prediction of wind tunnel tests using learning from examples[J]. International Journal of Computer Applications, 2011, 35(6):5-14. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_ea70ceb140c7edde7473ed13527228ad
    [20]
    RAVIKIRAN N, UBAIDULLA P. Support vector machine approach to drag coefficient estimation[C]//Proc of the 7th International Conference on Signal Processing. 2004.
    [21]
    姜宗林, 罗长童, 刘云峰, 高超声速风洞试验数据多空间相关理论与关联方法研究[C]//第四届高超声速科技学术会议论文集, 2011.

    JIANG Z L, LUO C T, LIU Y F. Research on multi-space correlation theory and correlation method of hypersonic wind tunnel experimental data[C]//Proc of the 4th National Conference on Hypersonic Science and Technology. 2011.
    [22]
    姜宗林, 罗长童, 胡宗民, 等.高超声速风洞试验数据的多维空间相关理论与关联方法[J].中国科学(物理学力学天文学), 2015, 45(12):40-51. http://www.cnki.com.cn/Article/CJFDTotal-JGXK201512006.htm

    JIANG Z L, LUO C T, HU Z M, et al. Multi-dimensional interrelation theory for hypersonic wind-tunnel experimental data and its correlation algorithm[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2015, 45(12):124705. http://www.cnki.com.cn/Article/CJFDTotal-JGXK201512006.htm
    [23]
    BRUNTON S L, PROCTOR J L, KUTZ J N. Discovering governing equations from data by sparse identification of nonlinear dynamical systems[J]. PNAS, 2016, 113(15):3932-3937. DOI: 10.1073/pnas.1517384113
    [24]
    GAMAHARA M, HATTORI Y. Searching for turbulence models by artificial neural network[J]. Physical Review Fluids, 2017, 2(5):054604. DOI: 10.1103/PhysRevFluids.2.054604
    [25]
    MALIK K, ZBIKOWSKI M, TEODORCZYK A. Detonation cell size model based on deep neural network for hydrogen, methane and propane mixtures with air and oxygen[J]. Nuclear Engineering and Technology, 2019, 51(2):424-431. DOI: 10.1016/j.net.2018.11.004
    [26]
    CHANDRASEKARAN N, OOMMEN C, KUMAR V R S, et al. Prediction of detonation velocity and N-O composition of high energy C-H-N-O explosives by means of artificial neural networks[J]. Propellants, Explosives, Pyrotechnics, 2019, 44(5):579-587. DOI: 10.1002/prep.201800325
    [27]
    FRANKE L L C, CHATZOPOULOS A K, RIGOPOULOS S. Tabulation of combustion chemistry via Artificial Neural Networks (ANNs):Methodology and application to LES-PDF simulation of Sydney flame L[J]. Combustion and Flame, 2017, 185:245-260. DOI: 10.1016/j.combustflame.2017.07.014
    [28]
    ZHU L Y, ZHANG W W, KOU J Q, et al. Machine learning methods for turbulence modeling in subsonic flows around airfoils[J]. Physics of Fluids, 2019, 31:015105. DOI: 10.1063/1.5061693
    [29]
    XIE C Y, WANG J C, LI H, et al. Artificial neural network mixed model for large eddy simulation of compressible isotropic turbulence[J]. Physics of Fluids, 2019, 31:085112. DOI: 10.1063/1.5110788
    [30]
    LUO C T, ZHANG S L. Parse-matrix evolution for symbolic regression[J]. Engineering Applications of Artificial Intelligence, 2012, 25(6):1182-1193. DOI: 10.1016/j.engappai.2012.05.015
    [31]
    KOZA J R. Genetic programming:On the programming of computers by means of natural selection[M]. 5th ed. Cambridge, MA:MIT Press, 1992.
    [32]
    O'NEILL M, RYAN C. Grammatical evolution[J]. IEEE Transactions on Evolutionary Computation, 2001, 5(4):349-358. http://d.old.wanfangdata.com.cn/Periodical/ywxk200705038
    [33]
    LUO C T, YU B. Low dimensional simplex evolution:a new heuristic for global optimization[J]. Journal of Global Optimization, 2012, 52(1):45-55. DOI: 10.1007/s10898-011-9678-1
    [34]
    CHEN C, LUO C T, JIANG Z L. Block building programming for symbolic regression[J]. Neurocomputing, 2018, 275:1973-1980. DOI: 10.1016/j.neucom.2017.10.047
    [35]
    CHEN C, LUO C T, JIANG Z L. A multilevel block building algorithm for fast modeling generalized separable systems[J]. Expert Systems with Applications, 2018, 109:25-34. DOI: 10.1016/j.eswa.2018.05.021
    [36]
    TSIEN H S. Superaerodynamics, mechanics of rarefied gases[J]. Journal of the Aeronautical Sciences, 1946, 13(12):653-664. DOI: 10.2514/8.11476
    [37]
    CHENG H K. Hypersonic shock-layer theory of the stagnation region at low Reynolds number[C]//Proceedings of the 1961 Heat Transfer and Fluid Mechanics Institute. 1961.
    [38]
    MACROSSAN M N. Scaling parameters for hypersonic flow: correlation of sphere drag data[C]//Proc of the 25th International Symposium on Rarefied Gas Dynamics. 2006.
    [39]
    LUO C T, HU Z M, ZHANG S L, et al. Adaptive space transformation:an invariant based method for predicting aerodynamic coefficients of hypersonic vehicles[J]. Engineering Applications of Artificial Intelligence, 2015, 46:93-103. DOI: 10.1016/j.engappai.2015.09.001
    [40]
    FIELD J V. Kepler's cosmological theories-their agreement with observation[J]. Quarterly Journal of the Royal Astronomical Society, 1982, (23):556-568. https://ui.adsabs.harvard.edu/abs/1982QJRAS..23..556F/abstract
    [41]
    [42]
    李素循.典型外形高超声速流动特性[M].北京:国防工业出版社, 2008.

    LI S X. Hypersonic flow characteristics around typical configuration[M]. Beijing:National Defense Industry Press, 2008.
    [43]
    WANG Q, LI J P, ZHAO W, et al. Comparative study on aerodynamic heating under perfect and nonequilibrium hypersonic flows[J]. Science China Physics, Mechanics & Astronomy, 2016, 59(2):624701. http://d.old.wanfangdata.com.cn/Conference/9438991
    [44]
    OERTEL H. Prandtl-essentials of fluid mechanics[M]. New York:Springer New York, 2010.
  • Cited by

    Periodical cited type(9)

    1. 袁佳铖,宗文刚,曾磊,李强,张昊元,蔺佳哲. 基于卷积神经网络的气动热预测方法. 空气动力学学报. 2024(01): 13-25 .
    2. 王泽,宋述芳,王旭,张伟伟. 数据驱动的气动热建模预测方法总结与展望. 气体物理. 2024(04): 39-55 .
    3. 李甜甜,高亮杰,刘中臣,辛亚楠,钱战森. 组合式高焓风洞大口径膜片破裂过程数值分析. 气动研究与试验. 2024(05): 110-118 .
    4. 王旭,宁晨伽,王文正,张伟伟. 面向飞行试验的多源气动数据智能融合方法. 空气动力学学报. 2023(02): 12-20 .
    5. 王泽,王梓伊,王旭,宋述芳,张伟伟. 一种数据驱动的气动热预示模型. 空气动力学学报. 2023(05): 12-19 .
    6. 周嘉明,董龙雷,赵建平,丁镇军,王潇屹. 基于概率神经网络的航天结构响应映射预示方法. 航天器环境工程. 2023(04): 392-399 .
    7. 王沛,李锦,江定武,毛枚良. 钝锥再入飞行器黏性干扰效应建模. 气体物理. 2022(05): 29-37 .
    8. 邓晨,陈功,王文正,郑凤麒,施孟佶. 基于飞行试验和风洞试验数据的融合算法研究. 空气动力学学报. 2022(06): 45-50 .
    9. 安复兴,李磊,苏伟,刘文伶,董超. 高超声速飞行器气动设计中的若干关键问题. 中国科学:物理学 力学 天文学. 2021(10): 6-25 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (479) PDF downloads (76) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close