Citation: | LUO Changtong, HU Zongmin, LIU Yunfeng, JIANG Zonglin. Research progress on ground-to-flight correlation of aerodynamic force and heating data from hypersonic wind tunnels[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(3): 78-89. DOI: 10.11729/syltlx20200006 |
[1] |
ANDERSON J D. Hypersonic and high-temperature gas dynamics[M]. 2nd ed. Reston, VA:AIAA, 2006.
|
[2] |
陈坚强, 张益荣, 张毅锋, 等.高超声速气动力数据天地相关性研究综述[J].空气动力学学报, 2014, 32(5):587-599. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kqdlxxb201405005
CHEN J Q, ZHANG Y R, ZHANG Y F, et al. Review of correlation analysis of aerodynamic data between flight and ground prediction for hypersonic vehicle[J]. Acta Aerodynamica Sinica, 2014, 32(5):587-599. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kqdlxxb201405005
|
[3] |
BERTIN J J, CUMMINGS R M. Critical hypersonic aerother-modynamic phenomena[J]. Annual Review of Fluid Mechanics, 2006, 38(1):129-157. DOI: 10.1146/annurev.fluid.38.050304.092041
|
[4] |
SALTZMAN E J, GARRIGER D E. Summary of full-scale lift and drag characteristics of the X-15 airplane[R]. NASA TN D-3343, 1966.
|
[5] |
VLASOV V I, GORSHKOV A B, KOVALEV R V, et al. Thin triangular blunt-nosed plate in a viscous hypersonic flow[J]. Fluid Dynamics, 2009, 44(4):596-605. DOI: 10.1134/S0015462809040139
|
[6] |
ELSENAAR A. On Reynolds number effects and simulation[R]. AGARD CP-429, 1988.
|
[7] |
HAINES A B. Prediction of scale effects at transonic speeds:current practice and a gaze into the future[J]. Aeronautical Journal, 2000, 104(1039), 421-431.
|
[8] |
HOWE J T. Hypervelocity atmospheric flight: real gas flow fields[R]. NASA RP-1249, 1989.
|
[9] |
龚安龙, 解静, 刘晓文, 等.近空间高超声速气动力数据天地换算研究[J].工程力学, 2017, 34(10):229-238. DOI: 10.6052/j.issn.1000-4750.2016.05.0404
GONG A L, XIE J, LIU X W, et al. Study on ground-to-flight extrapolation of near space hypersonic aerodynamic data[J]. Engineering Mechanics, 2017, 34(10):229-238. DOI: 10.6052/j.issn.1000-4750.2016.05.0404
|
[10] |
NICOLÌ A, IMPERATORE B, MARINI M, et al. Ground-to-flight extrapolation of the aerodynamic coefficients of the VEGA launcher[R]. AIAA-2006-3829, 2006.
|
[11] |
PETERSON J B, MANN M J, SORRELLS R B, et al. Wind-tunnel/flight correlation study of aerodynamic characteristics of a large flexible supersonic cruise airplane (XB-701). II: Extrapolation of wind-tunnel data to full-scale conditions[R]. NASA TP-1515, 1980.
|
[12] |
RUFOLO G, RONCIONI P, MARINI M, et al. Post flight aerodynamic analysis of the experimental vehicle PRORA USV 1[R]. AIAA-2008-2661, 2008.
|
[13] |
MORELLI E A, DELOACH R. Wind tunnel database development using modern experiment design and multivariate orthogonal functions[R]. AIAA-2003-0653, 2003.
|
[14] |
DOUGLAS D P, CAROLYN M. Statistical methods for rapid aerothermal analysis and design technology: Validation[R]. NASA NAG1-02030, 2003.
|
[15] |
汪清, 钱炜祺, 何开锋.导弹气动参数辨识与优化输入设计[J].宇航学报, 2008, 29(3):789-793. DOI: 10.3873/j.issn.1000-1328.2008.03.010
WANG Q, QIAN W Q, HE K F. Aerodynamic parameter identification and optimal input design for missile[J]. Journal of Astronautics, 2008, 29(3):789-793. DOI: 10.3873/j.issn.1000-1328.2008.03.010
|
[16] |
LEE J H, KIM E T, CHANG B H, et al. The accuracy of the flight derivative estimates derived from flight data[J]. International Journal of Aerospace and Mechanical Engineering, 2009, 3(10):1317-1323. https://www.researchgate.net/publication/289654115_The_accuracy_of_the_flight_derivative_estimates_derived_from_flight_data
|
[17] |
NORGAARD M, JORGENSEN C, ROSS J. Neural network prediction of new aircraft design coefficients[R]. NASA Technical Memorandum 112197, 1997.
|
[18] |
RAJKUMAR T, BARDINA J. Prediction of aerodynamic coefficients using neural networks for sparse data[C]//Proceedings of the 15th International Florida Artificial Intelligence Research Society Conference.2002.
|
[19] |
MALMATHANRAJ R, TYSON T F. Characteristic prediction of wind tunnel tests using learning from examples[J]. International Journal of Computer Applications, 2011, 35(6):5-14. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_ea70ceb140c7edde7473ed13527228ad
|
[20] |
RAVIKIRAN N, UBAIDULLA P. Support vector machine approach to drag coefficient estimation[C]//Proc of the 7th International Conference on Signal Processing. 2004.
|
[21] |
姜宗林, 罗长童, 刘云峰, 高超声速风洞试验数据多空间相关理论与关联方法研究[C]//第四届高超声速科技学术会议论文集, 2011.
JIANG Z L, LUO C T, LIU Y F. Research on multi-space correlation theory and correlation method of hypersonic wind tunnel experimental data[C]//Proc of the 4th National Conference on Hypersonic Science and Technology. 2011.
|
[22] |
姜宗林, 罗长童, 胡宗民, 等.高超声速风洞试验数据的多维空间相关理论与关联方法[J].中国科学(物理学力学天文学), 2015, 45(12):40-51. http://www.cnki.com.cn/Article/CJFDTotal-JGXK201512006.htm
JIANG Z L, LUO C T, HU Z M, et al. Multi-dimensional interrelation theory for hypersonic wind-tunnel experimental data and its correlation algorithm[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2015, 45(12):124705. http://www.cnki.com.cn/Article/CJFDTotal-JGXK201512006.htm
|
[23] |
BRUNTON S L, PROCTOR J L, KUTZ J N. Discovering governing equations from data by sparse identification of nonlinear dynamical systems[J]. PNAS, 2016, 113(15):3932-3937. DOI: 10.1073/pnas.1517384113
|
[24] |
GAMAHARA M, HATTORI Y. Searching for turbulence models by artificial neural network[J]. Physical Review Fluids, 2017, 2(5):054604. DOI: 10.1103/PhysRevFluids.2.054604
|
[25] |
MALIK K, ZBIKOWSKI M, TEODORCZYK A. Detonation cell size model based on deep neural network for hydrogen, methane and propane mixtures with air and oxygen[J]. Nuclear Engineering and Technology, 2019, 51(2):424-431. DOI: 10.1016/j.net.2018.11.004
|
[26] |
CHANDRASEKARAN N, OOMMEN C, KUMAR V R S, et al. Prediction of detonation velocity and N-O composition of high energy C-H-N-O explosives by means of artificial neural networks[J]. Propellants, Explosives, Pyrotechnics, 2019, 44(5):579-587. DOI: 10.1002/prep.201800325
|
[27] |
FRANKE L L C, CHATZOPOULOS A K, RIGOPOULOS S. Tabulation of combustion chemistry via Artificial Neural Networks (ANNs):Methodology and application to LES-PDF simulation of Sydney flame L[J]. Combustion and Flame, 2017, 185:245-260. DOI: 10.1016/j.combustflame.2017.07.014
|
[28] |
ZHU L Y, ZHANG W W, KOU J Q, et al. Machine learning methods for turbulence modeling in subsonic flows around airfoils[J]. Physics of Fluids, 2019, 31:015105. DOI: 10.1063/1.5061693
|
[29] |
XIE C Y, WANG J C, LI H, et al. Artificial neural network mixed model for large eddy simulation of compressible isotropic turbulence[J]. Physics of Fluids, 2019, 31:085112. DOI: 10.1063/1.5110788
|
[30] |
LUO C T, ZHANG S L. Parse-matrix evolution for symbolic regression[J]. Engineering Applications of Artificial Intelligence, 2012, 25(6):1182-1193. DOI: 10.1016/j.engappai.2012.05.015
|
[31] |
KOZA J R. Genetic programming:On the programming of computers by means of natural selection[M]. 5th ed. Cambridge, MA:MIT Press, 1992.
|
[32] |
O'NEILL M, RYAN C. Grammatical evolution[J]. IEEE Transactions on Evolutionary Computation, 2001, 5(4):349-358. http://d.old.wanfangdata.com.cn/Periodical/ywxk200705038
|
[33] |
LUO C T, YU B. Low dimensional simplex evolution:a new heuristic for global optimization[J]. Journal of Global Optimization, 2012, 52(1):45-55. DOI: 10.1007/s10898-011-9678-1
|
[34] |
CHEN C, LUO C T, JIANG Z L. Block building programming for symbolic regression[J]. Neurocomputing, 2018, 275:1973-1980. DOI: 10.1016/j.neucom.2017.10.047
|
[35] |
CHEN C, LUO C T, JIANG Z L. A multilevel block building algorithm for fast modeling generalized separable systems[J]. Expert Systems with Applications, 2018, 109:25-34. DOI: 10.1016/j.eswa.2018.05.021
|
[36] |
TSIEN H S. Superaerodynamics, mechanics of rarefied gases[J]. Journal of the Aeronautical Sciences, 1946, 13(12):653-664. DOI: 10.2514/8.11476
|
[37] |
CHENG H K. Hypersonic shock-layer theory of the stagnation region at low Reynolds number[C]//Proceedings of the 1961 Heat Transfer and Fluid Mechanics Institute. 1961.
|
[38] |
MACROSSAN M N. Scaling parameters for hypersonic flow: correlation of sphere drag data[C]//Proc of the 25th International Symposium on Rarefied Gas Dynamics. 2006.
|
[39] |
LUO C T, HU Z M, ZHANG S L, et al. Adaptive space transformation:an invariant based method for predicting aerodynamic coefficients of hypersonic vehicles[J]. Engineering Applications of Artificial Intelligence, 2015, 46:93-103. DOI: 10.1016/j.engappai.2015.09.001
|
[40] |
FIELD J V. Kepler's cosmological theories-their agreement with observation[J]. Quarterly Journal of the Royal Astronomical Society, 1982, (23):556-568. https://ui.adsabs.harvard.edu/abs/1982QJRAS..23..556F/abstract
|
[41] |
Kepler's laws of planetary motion. https://en.wikipedia.org/wiki/Kepler's_laws_of_planetary_motion.
|
[42] |
李素循.典型外形高超声速流动特性[M].北京:国防工业出版社, 2008.
LI S X. Hypersonic flow characteristics around typical configuration[M]. Beijing:National Defense Industry Press, 2008.
|
[43] |
WANG Q, LI J P, ZHAO W, et al. Comparative study on aerodynamic heating under perfect and nonequilibrium hypersonic flows[J]. Science China Physics, Mechanics & Astronomy, 2016, 59(2):624701. http://d.old.wanfangdata.com.cn/Conference/9438991
|
[44] |
OERTEL H. Prandtl-essentials of fluid mechanics[M]. New York:Springer New York, 2010.
|