Xu Ziran, Zhou Qi, Zhu Ledong. Identification of aerodynamic admittances by considering the effect of incomplete span-wise correlation of buffeting forces on sectional model[J]. Journal of Experiments in Fluid Mechanics, 2014, (5): 39-46. DOI: 10.11729/syltlx20130113
Citation: Xu Ziran, Zhou Qi, Zhu Ledong. Identification of aerodynamic admittances by considering the effect of incomplete span-wise correlation of buffeting forces on sectional model[J]. Journal of Experiments in Fluid Mechanics, 2014, (5): 39-46. DOI: 10.11729/syltlx20130113

Identification of aerodynamic admittances by considering the effect of incomplete span-wise correlation of buffeting forces on sectional model

More Information
  • The relationship between the spectra of the distributed buffeting forces on a model cross section and the total buffeting forces on the whole sectional model measured by a base-sup-ported force balance in wind tunnel test of sectional model was derived first in this paper by consider-ing the span-wise incomplete correlation of distributed buffeting forces on the sectional model.By taking a quasi-flat plate cross section as an example,sectional model wind tunnel tests of force measurement and simultaneous pressure measurement were carried out in a grid-generated turbu-lent wind field to obtain the spectra of the total buffeting forces and the span-wise correlation functions of the distributed buffeting forces.On this basis,the equivalent aerodynamic admit-tance functions of the quasi-flat plate were calculated in the light of the equivalent admittance method whilst the six-component aerodynamic admittance functions of the quasi-flat plate were identified by using a least square approach based on a colligated residue of the auto spectrum of buffeting force and the cross-spectra between buffeting force and fluctuating wind velocities,ab-breviated as “colligated least square approach of auto and cross spectra”.The effect of the span-wise incomplete correlation on the identification results of the aerodynamic admittance were then discussed and the identified results were compared with Sears function,the theoretical solution of the aerodynamic admittance function of flat plate under the vertical fluctuating velocity of w.The results show that the ignorance of the span-wise incomplete correlation of the distributed buffe-ting forces on the sectional model,namely the direct employment of the averaged buffeting force as the distributed one based on the assumption of complete correlation of distributed buffeting forces along the model span,will lead to underestimated values of the identified aerodynamic ad-mittance functions,and the extent of the underestimation will rise with the increase of frequency. Furthermore,the effect of the span-wise incomplete correlation of buffeting force on the buffe-ting drag related components of aerodynamic admittance is more remarkable than that on the buf-feting lift force or torsional moment related components of aerodynamic admittance because the span-wise correlation of buffeting drag is much weak than those of the buffeting lift force and tor-sional moment.It can also be found that the back-calculated spectra of distributed buffeting forces acting on the model obtained by using the six-component aerodynamic admittance functions identified with the colligated least square approach of auto and cross spectra are quite close to those measured in the test.The two components of aerodynamic admittance related to the verti-cal fluctuating wind velocity (w)as well as the buffeting lift force and torsional moment are also rather close to the Sears function.These two facts verify the reliability of the colligated least square approach of auto and cross spectra for the identification of aerodynamic admittance.
  • Related Articles

    [1]Zhang Hui, Fan Litao. Correlation analysis of large low speed wind tunnel test on CHN-T1 calibration model[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 106-111. DOI: 10.11729/syltlx20180046
    [2]He Yuanyuan, Wu Yingchuan, Zhang Xiaoqing, Lin Qi. Analysis of data correlation between combustion heated impulse facility and hypersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(3): 64-68. DOI: 10.11729/syltlx20180011
    [3]Wu Yingchuan, He Yuanyuan, Zhang Xiaoqing, Lin Qi, Le Jialing. Analysis of data correlation between impulse and continuous combustion heated facilities[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(3): 58-63. DOI: 10.11729/syltlx20180008
    [4]Zheng Yunfei, Liu Qingkuan, Ma Wenyong, Liu Xiaobing. Effects of end plates on aerodynamic force of rectangular prisms in wind tunnel test[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(3): 38-45. DOI: 10.11729/syltlx20170015
    [5]Li Zhengnong, Li Hongyi, Luo Diefeng, Pan Yueyue. Study of the correlation between the measured wind field and wind pressure on a high-rise building[J]. Journal of Experiments in Fluid Mechanics, 2015, (4): 32-40. DOI: 10.11729/syltlx20140125
    [6]CHEN De-hua, WANG Rui-bo, LIU Guang-yuan, SHI Jian-yuan, YIN Lu-ping. The test and flow field calibration of 2.4m transonic wind tunnel slotted test section[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(4): 66-70. DOI: 10.3969/j.issn.1672-9897.2013.04.012
    [7]LI Zheng-nong, SONG Ke, LI Qiu-sheng, ZHI Lun-hai, WU Jiu-rong. Correlation analysis of wind characteristic and wind-induced response of CITIC Plaza[J]. Journal of Experiments in Fluid Mechanics, 2009, 23(4): 21-27. DOI: 10.3969/j.issn.1672-9897.2009.04.005
    [8]XIAN Rong, LIAO Hai-li, LI Ming-shui. Analysis of vortex-induced vibration of large-scale section model of girder in wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2009, 23(4): 15-20. DOI: 10.3969/j.issn.1672-9897.2009.04.004
    [9]JIA Qu-yao. Investigation on aerodynamic relation between real flight and wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2006, 20(4): 87-93. DOI: 10.3969/j.issn.1672-9897.2006.04.017
    [10]Section model wind tunnel test for steady aerodynamic force of line-like multi-body system[J]. Journal of Experiments in Fluid Mechanics, 2004, 18(2): 91-94. DOI: 10.3969/j.issn.1672-9897.2004.02.020
  • Cited by

    Periodical cited type(13)

    1. 孔维梁,钟鑫宇,韩涵,刘洪. 过冷大水滴双峰分布特性影响冰形机制的数值模拟研究. 气动研究与试验. 2025(01): 24-35 .
    2. 陈海,郭向东,赵荣,易贤. 基于自研喷嘴的冻雨结冰云雾条件试验匹配方法. 气动研究与试验. 2025(02): 75-81 .
    3. 桑旭,金哲岩,杨志刚,余放. 水滴在气流中变形破碎过程的数值模拟研究. 上海交通大学学报. 2024(04): 419-427 .
    4. 刘翔,刘文淇,赵梁,汝佳兴,卫洪森,张爱聆. 机翼结冰特性及复杂流场分析研究进展. 航空工程进展. 2024(04): 130-142 .
    5. 王利平,王福新,刘洪. 过冷大水滴环境粒径分布模拟方法研究进展. 航空学报. 2024(S1): 6-25 .
    6. 陈勇,孔维梁,刘洪. 飞机过冷大水滴结冰气象条件运行设计挑战. 航空学报. 2023(01): 7-21 .
    7. 李斯,束珺,张志强,顾洪宇. 冰风洞过冷大水滴云雾水滴质量分布模拟. 南京航空航天大学学报. 2023(01): 146-153 .
    8. 陈海,郭向东,赵荣,易贤,王丹. 冻细雨分布匹配的量化评估方法. 南京航空航天大学学报. 2023(02): 233-240 .
    9. 陈方备,戴铮,崔燚,吴健. 有限空间竖直壁面的结冰特性. 航空学报. 2023(S2): 274-284 .
    10. 马金博,付冬梅,王高远,郝莲,王丹. 待机状态下机翼结冰的快速计算方法. 民用飞机设计与研究. 2022(02): 67-75 .
    11. 韩涵,李姚,印子斐,孔维梁,刘洪. 过冷大水滴粒径分布的欧拉-拉格朗日混合抽样算法及对冰型影响. 科学技术与工程. 2022(20): 8960-8971 .
    12. 陈舒越,郭向东,王梓旭,刘森云,吴迎春. 结冰风洞过冷大水滴粒径测量初步研究. 实验流体力学. 2021(03): 22-29 . 本站查看
    13. 施红,王均毅,陈佳敏,丁媛媛,张彤. 过冷大水滴条件下结冰相似准则. 航空动力学报. 2019(05): 1101-1110 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (105) PDF downloads (7) Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close