Wu Yingchuan, He Yuanyuan, Zhang Xiaoqing, Lin Qi, Le Jialing. Analysis of data correlation between impulse and continuous combustion heated facilities[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(3): 58-63. DOI: 10.11729/syltlx20180008
Citation: Wu Yingchuan, He Yuanyuan, Zhang Xiaoqing, Lin Qi, Le Jialing. Analysis of data correlation between impulse and continuous combustion heated facilities[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(3): 58-63. DOI: 10.11729/syltlx20180008

Analysis of data correlation between impulse and continuous combustion heated facilities

More Information
  • Received Date: January 17, 2018
  • Revised Date: April 07, 2018
  • The comparison tests of impulse and continuous combustion heated facilities were conducted. For Hydrogen-Oxygen combustion heated impulse and continuous facilities, the pressure coefficient distributions of the engine flow path were coincident but the engine thrust gain in continuous facility was 10% larger than that in the impulse facility. For Hydrogen-Oxygen combustion heated impulse facility and Alcohol-Oxygen combustion heated continuous facility, the pressure coefficient distributions of the engine flow path were coincident but the engine thrust gain in continuous facility was 5% larger than that in the impulse facility.
  • [1]
    Tirres C, Bradley M, Morrison C. A flow quality analysis for future hypersonic vehicle testing[R]. AIAA-2002-2706, 2002. http://www.researchgate.net/publication/268559846_A_Flow_Quality_Analysis_for_Future_Hypersonic_Vehicle_Testing_Invited
    [2]
    Boyce R R, Paull A, Stalker R J, et al. Comparison of supersonic combustion between impulse and vitiation-heated facilities[J]. Journal of Propulsion and Power, 2000, 16(4):709-717. DOI: 10.2514/2.5631
    [3]
    Mitani T, Hiraiwa T, Sato S, et al. Comparison of scramjet engine performance in mach 6 vitiated and storage-heated air[J]. Journal of Propulsion and Power, 1997, 13(5):635-642. DOI: 10.2514/2.5228
    [4]
    Rockwell R D, Goyne C P, Haw W, et al. Experimental study of test-medium vitiation effects on dual-mode scramjet performance[J]. Journal of Propulsionand Power, 2011, 27(5):1135-1142. DOI: 10.2514/1.B34180
    [5]
    Krauss R H, Gauba G, Whitehurst R B, et al. Experimental and numerical investigation on steam-vitiated supersonic hydrogen combustion[R]. AIAA-96-0856, 1996. http://www.researchgate.net/publication/269214915_Experimental_and_numerical_investigation_on_steam-vitiated_supersonic_hydrogen_combustion
    [6]
    Haw W L, Goyne C P, Rockwell R D, et al. Experimental study of vitiation effects on scramjet mode transition[J]. Journal of Propulsion and Power, 2011, 27(2):506-508. DOI: 10.2514/1.49090
    [7]
    McDaniel J C, Krauss R H, Whitehurst W B, et al. Test gas vitiation effects in a dual-mode combustor[R]. AIAA-2003-6960, 2003. DOI: 10.2514/6.2003-6960
    [8]
    Goyne C P, McDaniel Jr, Krauss R H, et al. Test gas vitiation effects in a dual-mode scramjet combustor[J]. Journal of Propulsion and Power, 2007, 23(3):559-565. DOI: 10.2514/1.24663
    [9]
    Rockwell R D, Goyne C P, Haw W L, et al. Experimental study of test medium vitiation effects on dual-mode scramjet mode transition[R]. AIAA-2010-1126, 2010. DOI: 10.2514/6.2010-1126
    [10]
    Srinivasan S, Erickson W D. Interpretation of vitiation effects on testing at mach 7 flight conditions[R]. AIAA-95-2719, 1995. http://www.researchgate.net/publication/269059233_Interpretation_of_vitiation_effects_on_testing_at_Mach_7_flight_conditions
    [11]
    王磊, 宋文艳, 罗飞腾. H2O组分对氢燃料超音速燃烧室性能的影响[J].航空工程进展, 2010, 1(2):159-163. DOI: 10.3969/j.issn.1674-8190.2010.02.013

    Wang L, Song W Y, Luo F T. Research on the effects of H2O contaminant on hydrogen-fueled supersonic combustor performance[J]. Advances in Aeronautical Science and Engineering, 2010, 1(2):159-163. DOI: 10.3969/j.issn.1674-8190.2010.02.013
    [12]
    张志强, 宋文艳, 罗飞腾. H2O/CO2组分对氢和乙烯超声速燃烧室性能影响数值模拟[J].西北工业大学学报, 2012, 30(2):256-261. DOI: 10.3969/j.issn.1000-2758.2012.02.020

    Zhang Z Q, Song W Y, Luo F T. Numerical investigation of effects of H2O/CO2 vitiation on performance of hydrogen and ethylene supersonic combustors[J]. Journal of Northwestern Polytechnical University, 2012, 30(2):256-261. DOI: 10.3969/j.issn.1000-2758.2012.02.020
    [13]
    Luo F T, Song W Y, Zhang Z Q, et al. Experimental and numerical studies of vitiated air effects on hydrogen-fueled supersonic combustor performance[J]. Chinese Journal of Aeronautics, 2012, 25(2):164-172. DOI: 10.1016/S1000-9361(11)60375-0
    [14]
    陈亮, 宋文艳, 罗飞腾. H2O/CO2污染对煤油燃料双模态超声速燃烧室影响研究[J].推进技术, 2015, 36(2):253-260. http://d.wanfangdata.com.cn/Periodical_tjjs201502013.aspx

    Chen L, Song W Y, Luo F T. Vitiation effects of H2O/CO2 on kerosene-fueled dual-mode supersonic combustor performance[J]. Journal of Propulsion Technology, 2015, 36(2):253-260. http://d.wanfangdata.com.cn/Periodical_tjjs201502013.aspx
    [15]
    刘伟雄, 杨阳, 邵菊香, 等.空气污染组分H2O和CO2对乙烯燃烧性能的影响[J].物理化学学报, 2009, 25(8):1618-1622. DOI: 10.3866/PKU.WHXB20090809

    Liu W X, Yang Y, Shao J X, et al. Influence of H2O and CO2 contamination in air on the combustion properties of ethylene[J]. Acta Physico-Chimica Sinica, 2009, 25(8):1618-1622. DOI: 10.3866/PKU.WHXB20090809
    [16]
    刘伟雄, 贺伟, 李宏斌, 等.污染组分对氢燃料发动机燃烧动力学的影响[J].科学通报, 2008, 53(18):2257-2260. DOI: 10.3321/j.issn:0023-074X.2008.18.017
    [17]
    侯凌云, 杨缙, 马雪松, 等.空气污染各组分对甲烷超声速燃烧性能的影响[J].物理化学学报, 2010, 26(12):3150-3156. DOI: 10.3866/PKU.WHXB20101204

    Hou L Y, Yang J, Ma X S, et al. Effects of Species in vitiation air on methane-fueled supersonic combustion[J]. Acta Physico-Chimica Sinica, 2010, 26(12):3150-3156. DOI: 10.3866/PKU.WHXB20101204
    [18]
    谭宇, 毛雄兵, 焦伟, 等.燃烧风洞不同模拟方式对超燃发动机性能影响试验研究[J].推进技术, 2017, 38(9):2062-2068. http://d.old.wanfangdata.com.cn/Periodical/tjjs201709018

    Tan Y, Mao X B, Jiao W, et al. Experimental investigation of effects of different simulation way of combustion heating wind tunnel on scramjet performance[J]. Journal Propulsion Technology, 2017, 38(9):2062-2068. http://d.old.wanfangdata.com.cn/Periodical/tjjs201709018
    [19]
    乐嘉陵, 刘伟雄, 贺伟, 等.脉冲燃烧风洞及其在火箭和超燃发动机研究中的应用[J].实验流体力学, 2005, 19(1):1-10. DOI: 10.3969/j.issn.1672-9897.2005.01.001

    Le J L, Liu W X, H W, et al. Impulse combustion wind tunnel and its application in rocket and scramjet research[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(1):1-10. DOI: 10.3969/j.issn.1672-9897.2005.01.001
    [20]
    Le J L, Liu W X, He W, et al. Pulse combustion facility and its preliminary application in scramjet research[C]. 11th International Conference on Methods of Aerophysical Research, Novosibrisk, Russia, 2002.
    [21]
    吴颖川, 贺元元, 贺伟, 等.吸气式高超声速飞行器机体推进一体化技术研究进展[J].航空学报, 2015, 36(1):245-260. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501020

    Wu Y C, He Y Y, He W, et al. Progress in airframe-propulsion integration technology of air-breathing hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):245-260. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501020
    [22]
    贺元元, 贺伟, 张小庆, 等.燃烧加热脉冲风洞气动/推进一体化试验研究[J].推进技术, 2017, 38(8):1741-1746. http://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201708008.htm

    He Y Y, He W, Zhang X Q, et al. Aero-propulsion integration test in combustion heated impulse facility[J]. Journal of Propulsion Technology, 2017, 38(8):1741-1746. http://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201708008.htm
    [23]
    贺伟, 高昌, 张小庆, 等.脉冲燃烧风洞测力天平研制与应用[J].实验流体力学, 2016, 30(4):66-70. http://www.syltlx.com/CN/abstract/abstract10953.shtml

    He W, Gao C, Zhang X Q, et al. Development and application of the force-measuring balance in impulse combustion wind tunnel tests[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(4):66-70. http://www.syltlx.com/CN/abstract/abstract10953.shtml
  • Related Articles

    [1]WANG Shang, CHEN Binnian, CHEN Guoyong, YANG Xiaoquan, Weng Peifen. Mechanism and control of airframe noise of large passenger aircraft[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(3): 63-78. DOI: 10.11729/syltlx20230058
    [2]LI Yong. Progress of research on airfoil trailing edge tonal noise at low-moderate Reynolds number and its control[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(3): 38-49. DOI: 10.11729/syltlx20230062
    [3]WEI Renke, LIU Yu. Review of slat noise mechanism and control in high-lift devices[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(3): 20-37. DOI: 10.11729/syltlx20230017
    [4]LIAN Jianxin, CHEN Weijie, QIAO Weiyang, DU Jun, LIU Yuanshi, LIU Bin. Experimental study on the directivity and noise reduction of the blade leading-edge noise using Inverse Method SODIX based on microphone array[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(1): 67-78. DOI: 10.11729/syltlx20230020
    [5]ZHOU Zhiteng, WANG Shizhao. A quadrupole correction model to suppress spurious sound with moving permeable integral surfaces[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(1): 46-56. DOI: 10.11729/syltlx20230072
    [6]HU Yasen, ZHANG Pengjunyi, ZHUANG Guohui, WAN Zhenhua, SUN Dejun. Noise control of serrated trailing edge airfoil under small incidence angle[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(1): 28-36. DOI: 10.11729/syltlx20230031
    [7]ZHANG Junlong, LEI Hongsheng, ZHAO Yu, LI Jie. Measurement and correction of high frequency jet noise[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 16-21. DOI: 10.11729/syltlx20190103
    [8]LIU Jun, CAI Jinsheng, ZHOU Fangqi. Mach number sensitivity analysis of cavity noise[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(3): 104-110. DOI: 10.11729/syltlx20190079
    [9]Wang Yigang, Jiao Yan, Zhang Jie. Evaluation of simplified automobile wind noise model based on main propagation path of sound and vibration[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(6): 90-94. DOI: 10.11729/syltlx20190106
    [10]Wang Xiansheng, Yang Dangguo, Liu Jun, Zhou Fangqi, Shi Ao. Progress of research on noise induced by compressible flow over cavities[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(3): 1-16. DOI: 10.11729/syltlx20170132

Catalog

    Article Metrics

    Article views (244) PDF downloads (17) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close