SHEN H,WEI B,JIANG Y,et al. Wind tunnel test of blade number effect on icing distribution of vertical axis wind turbine[J]. Journal of Experiments in Fluid Mechanics, 2021,35(4):67-72.. DOI: 10.11729/syltlx20200094
Citation: SHEN H,WEI B,JIANG Y,et al. Wind tunnel test of blade number effect on icing distribution of vertical axis wind turbine[J]. Journal of Experiments in Fluid Mechanics, 2021,35(4):67-72.. DOI: 10.11729/syltlx20200094

Wind tunnel test of blade number effect on icing distribution of vertical axis wind turbine

More Information
  • Received Date: August 01, 2020
  • Revised Date: September 22, 2020
  • Available Online: August 25, 2021
  • Icing on the surface of wind turbine blades can reduce the turbine’s aerodynamic characteristics and power generation efficiency. In this paper, the effect of the number of blades on the icing distribution on the blade surface of a vertical axis wind turbine is studied. A natural low temperature icing wind tunnel experiment system was built to test the icing distribution of three groups of blades (1, 2, 4) under three tip speed ratios (0.2, 0.6, 1.0). The results show that the number of blades has a significant effect on the distribution of icing on the blade surface of the vertical axis wind turbine under different tip speed ratios, and the icing distribution on the inner and outer surfaces of the blade is asymmetric. With the increase of the number of blades, the thickness of the ice layer on the surface of the blades increases first and then decreases. In the 10% area at the leading edge of the chord, the increase of the thickness of the ice layer is significantly greater than that at other parts of the blade. With the increase of the tip speed ratio, the thickness of the ice layer on the leading edge of the blade is significantly larger than that at other parts of the blade, and the thickness difference of the ice layer between the inner and outer surface on the leading edge of the blade increases gradually. The research results can provide a reference for the anti-icing and de-icing technology of wind turbine blades.
  • [1]
    战培国. 国外寒冷地区风力机结冰问题研究[J]. 航空科学技术,2016,27(2):1-6. DOI: 10.3969/j.issn.1007-5453.2016.02.001

    ZHAN P G. Review of the wind turbine icing in overseas cold regions[J]. Aeronautical Science & Technology,2016,27(2):1-6. doi: 10.3969/j.issn.1007-5453.2016.02.001
    [2]
    朱胜兵. 大型风力机叶片结冰对其模态影响的研究[D]. 长沙: 湖南大学, 2018.

    ZHU S B. Modal analysis on large wind turbine and its blade characterized by ice accumulation[D]. Changsha: Hunan University, 2018.
    [3]
    LI Y,TAGAWA K,FENG F,et al. A wind tunnel experimental study of icing on wind turbine blade airfoil[J]. Energy Conversion and Management,2014,85:591-595. doi: 10.1016/j.enconman.2014.05.026
    [4]
    王晓东,于佳鑫,房代宝,等. 随机风况下风力机翼型结冰对气动特性的影响研究[J]. 风机技术,2020,62(2):59-66.

    WANG X D,YU J X,FANG D B,et al. Investigations on the influence of icing on aerodynamics of wind turbine airfoil under stochastic wind conditions[J]. Chinese Journal of Turbomachinery,2020,62(2):59-66.
    [5]
    陈红星. 薄覆冰状态下小型风力发电机叶片模态试验研究[D]. 呼和浩特: 内蒙古农业大学, 2019.

    CHEN H X. Modal test of small wind turbine blades under thin ice cover[D]. Hohhot: Inner Mongolia Agricultural University, 2019.
    [6]
    胡良权,陈进格,沈昕,等. 结冰对风力机载荷的影响[J]. 上海交通大学学报,2018,52(8):904-909.

    HU L Q,CHEN J G,SHEN X,et al. Load of wind turbine affected by icing[J]. Journal of Shanghai Jiao Tong University,2018,52(8):904-909.
    [7]
    GAO L Y,LIU Y,HU H. An experimental investigation of dynamic ice accretion process on a wind turbine airfoil model considering various icing conditions[J]. International Journal of Heat and Mass Transfer,2019,133:930-939. doi: 10.1016/j.ijheatmasstransfer.2018.12.181
    [8]
    BLASCO P,PALACIOS J,SCHMITZ S. Effect of icing roughness on wind turbine power production[J]. Wind Energy,2017,20(4):601-617. doi: 10.1002/we.2026
    [9]
    ETEMADDAR M,HANSEN M O L,MOAN T. Wind turbine aerodynamic response under atmospheric icing conditions[J]. Wind Energy,2014,17(2):241-265. doi: 10.1002/we.1573
    [10]
    易贤,周志宏,杜雁霞,等. 考虑相变时间效应的结冰试验相似参数[J]. 实验流体力学,2016,30(2):14-19. DOI: 10.11729/syltlx20160016

    YI X,ZHOU Z H,DU Y X,et al. An icing scaling parameter with the effects of phase change time[J]. Journal of Experiments in Fluid Mechanics,2016,30(2):14-19. doi: 10.11729/syltlx20160016
    [11]
    易贤,郭龙,符澄,等. 结冰风洞试验段水滴分布特性分析[J]. 实验流体力学,2016,30(3):2-7. DOI: 10.11729/syltlx20160034

    YI X,GUO L,FU C,et al. Analysis of water droplets distribution in the test section of an icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics,2016,30(3):2-7. doi: 10.11729/syltlx20160034
    [12]
    周志宏,易贤,桂业伟,等. 考虑水滴动力学效应的结冰试验相似准则[J]. 实验流体力学,2016,30(2):20-25. DOI: 10.11729/syltlx20160013

    ZHOU Z H,YI X,GUI Y W,et al. Icing scaling law with the dynamic effects of water droplets[J]. Journal of Experiments in Fluid Mechanics,2016,30(2):20-25. doi: 10.11729/syltlx20160013
    [13]
    李维浩,李伟斌,易贤,等. 考虑动力学效应的结冰试验相似准则修正方法[J]. 实验流体力学,2020,34(3):97-103. DOI: 10.11729/syltlx20190166

    LI W H,LI W B,YI X,et al. A correction method of icing testing scaling law with dynamic effects[J]. Journal of Experiments in Fluid Mechanics,2020,34(3):97-103. doi: 10.11729/syltlx20190166
    [14]
    LI Y,WANG S L,LIU Q D,et al. Characteristics of ice accretions on blade of the straight-bladed vertical axis wind turbine rotating at low tip speed ratio[J]. Cold Regions Science and Technology,2018,145:1-13. doi: 10.1016/j.coldregions.2017.09.001
    [15]
    李岩,孙策,郭文峰,等. 利用自然低温的旋转叶片结冰风洞试验系统设计[J]. 实验流体力学,2018,32(2):40-47. DOI: 10.11729/syltlx20170073

    LI Y,SUN C,GUO W F,et al. Design of icing wind tunnel experiment system for rotating blades by using natural low temperature[J]. Journal of Experiments in Fluid Mechanics,2018,32(2):40-47. doi: 10.11729/syltlx20170073
  • Related Articles

    [1]ZHANG Hongjian, ZHANG Yanxin, XIONG Jianjun, ZHAO Zhao, RAN Lin, YI Xian. Numerical simulation and experimental research of Lamb wave propagation characteristics in ice[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(2): 68-77. DOI: 10.11729/syltlx20210170
    [2]DU Baihe, ZHANG Songhe, GE Qiang, WANG Maogang. Study on flow field characteristics of inert gas-air hybrid arc[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(5): 69-75. DOI: 10.11729/syltlx20210052
    [3]XIE Aimin, XING Yanchang, WANG Min, BU Shaoqing. 1.2 m large-field focusing schlieren technique[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20220047
    [4]GUO Xiangdong, ZHANG Pingtao, ZHANG Ke, GUO Qiling, GUO Long. Improvement and evaluation of thermal flow-field quality in CARDC icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(4): 41-51. DOI: 10.11729/syltlx20200118
    [5]Xu Kejing, Chang Juntao, Li Nan, Bao Wen, Yu Daren. Recent research progress on motion characteristics and flow mechanism of shock train in an isolator with background waves[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 31-42. DOI: 10.11729/syltlx20180196
    [6]Xie Aimin, Bu Shaoqing, Luo Jinyang. Primary study of large-field focusing schlieren technique based on tiled light sources[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 68-73. DOI: 10.11729/syltlx20180012
    [7]Sha Xinguo, Wen Shuai, Yuan Minglun, Lu Hongbo, Ji Feng. Visualization of shock wave in hypersonic flow using electric discharge[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(3): 87-93. DOI: 10.11729/syltlx20170106
    [8]Chen Fei, Sun Bin. The study of dynamic differential pressure signal of gas-liquid two-phase flow based on adaptive Chirplet transformation[J]. Journal of Experiments in Fluid Mechanics, 2015, (6): 59-66. DOI: 10.11729/syltlx20140113
    [9]JIA Xiao-na, CHEN Xu, LI Wei-hua, ZUO Bing-guang. The application of synthetic schlieren technique in the experimental study of internal wave[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(4): 92-96. DOI: 10.3969/j.issn.1672-9897.2013.04.017
    [10]ZHU Zi-hua, HU Shi-jun, HU Da-peng, LIU Xue-wu. Experimental study and simulation of swirling jet gas wave refrigerator[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(3): 35-37,65. DOI: 10.3969/j.issn.1672-9897.2007.03.007
  • Cited by

    Periodical cited type(3)

    1. 王一平,徐司雨,姚二岗,李恒,张洋,于瑾,赵凤起. 先进光学诊断技术在含能材料燃烧测试中的应用进展. 火炸药学报. 2024(01): 1-16 .
    2. 吴凌昊,石小江,李杨,雷庆春,范玮. 超燃冲压发动机燃烧室光学测量技术发展现状. 计测技术. 2024(03): 57-71 .
    3. 袁勋,于欣,彭江波,曾徽,欧东斌. 电弧风洞NO平面激光诱导荧光可视化方法与试验验证. 航空学报. 2023(19): 73-82 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close