Citation: | SONG Chunlei, REN Yukun, HE Wenjun, JIANG Tianyi, JIANG Hongyuan. Experimental study on circulating filtration of micro particles based on metal rubber and dielectrophoretic effect[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 39-45. DOI: 10.11729/syltlx20190152 |
[1] |
WANG S L, BAI H B, LU G H. The research progress and application expectation of metal rubber vibration isolator[C]//Proc of International Conference on Materials, Environmental and Biological Engineering. 2015.
|
[2] |
国亚东, 夏宇宏, 陈照波, 等.金属橡胶过滤材料孔径分布特性研究[J].过滤与分离, 2008, 18(2):8-10. DOI: 10.3969/j.issn.1005-8265.2008.02.003
GUO Y D, XIA Y H, CHEN Z B, et al. Research on pore size distributions of metal rubber filtering materials[J]. Journal of Filtration & Separation, 2008, 18(2):8-10. DOI: 10.3969/j.issn.1005-8265.2008.02.003
|
[3] |
邹广平, 刘泽, 程贺章, 等.预紧量与振动量级对金属橡胶减振器振动特性影响研究[J].振动与冲击, 2015, 34(22):173-177, 191. http://d.old.wanfangdata.com.cn/Periodical/zdycj201522030
ZOU G P, LIU Z, CHENG H Z, et al. Effects of preloading and vibration level on the vibration characteristics of metal rubber damper[J]. Journal of Vibration and Shock, 2015, 34(22):173-177, 191. http://d.old.wanfangdata.com.cn/Periodical/zdycj201522030
|
[4] |
白鸿柏, 路纯红, 曹凤利, 等.金属橡胶调压阀流阻性能试验研究[J].机械科学与技术, 2013, 32(12):1864-1868. http://d.old.wanfangdata.com.cn/Periodical/jxkxyjs201312032
BAI H B, LU C H, CAO F L, et al. Experimental study of flow resistance of a metal rubber pressure regulation valve[J]. Mechanical Science and Technology for Aerospace Engineering, 2013, 32(12):1864-1868. http://d.old.wanfangdata.com.cn/Periodical/jxkxyjs201312032
|
[5] |
姜洪源, 国亚东, 陈照波, 等. 0Cr18Ni9Ti金属橡胶过滤材料最大孔径研究[J].稀有金属材料与工程, 2009, 38(12):2116-2120. DOI: 10.3321/j.issn:1002-185X.2009.12.010
JIANG H Y, GUO Y D, CHEN Z B, et al. Research on maximal pore size of 0Cr18Ni9Ti metal rubber filtering material[J]. Rare Metal Materials and Engineering, 2009, 38(12):2116-2120. DOI: 10.3321/j.issn:1002-185X.2009.12.010
|
[6] |
侯军芳, 白鸿柏, 刘英杰, 等.新型金属橡胶孔隙材料过滤机制与性能研究[J].润滑与密封, 2006(4):109-112. DOI: 10.3969/j.issn.0254-0150.2006.04.037
HOU J F, BAI H B, LIU Y J, et al. Research on filtration mechanism and performance of elastic and porous metal-rubber material[J]. Lubrication Engineering, 2006(4):109-112. DOI: 10.3969/j.issn.0254-0150.2006.04.037
|
[7] |
REN Y K, LIU W Y, JIA Y K, et al. Induced-charge electroosmotic trapping of particles[J]. Lab on a Chip, 2015, 15(10):2181-2191. DOI: 10.1039/C5LC00058K
|
[8] |
WU Y P, REN Y K, TAO Y, et al. Large-scale single particle and cell trapping based on rotating electric field induced-charge electroosmosis[J]. Analytical Chemistry, 2016, 88(23):11791-11798. DOI: 10.1021/acs.analchem.6b03413
|
[9] |
REN Y K, LIU W Y, LIU J W, et al. Particle rotational trapping on a floating electrode by rotating induced-charge electroosmosis[J]. Biomicrofluidics, 2016, 10(5):054103. DOI: 10.1063/1.4962804
|
[10] |
DEY R, SHAIK V A, CHAKRABORTY D, et al. AC electric field-induced trapping of microparticles in pinched microconfinements[J]. Langmuir, 2015, 31(21):5952-5961. DOI: 10.1021/la504795m
|
[11] |
CALERO V, GARCIA-SANCHEZ P, HONRADO C M F, et al. AC electrokinetic biased deterministic lateral displacement for tunable particle separation[J]. Lab on a Chip, 2019, 19(8):1386-1396. DOI: 10.1039/C8LC01416G
|
[12] |
URDANETA M, SMELA E. Multiple frequency dielectrophoresis[J]. Electrophoresis, 2007, 28(18):3145-3155. DOI: 10.1002/elps.200600786
|
[13] |
AROSIO P, MVLLER T, MAHADEVAN L, et al. Density-gradient-free microfluidic centrifugation for analytical and preparative separation of nanoparticles[J]. Nano Letters, 2014, 14(5):2365-2371. DOI: 10.1021/nl404771g
|
[14] |
COLLINS D J, MA Z C, HAN J Y, et al. Continuous micro-vortex-based nanoparticle manipulation via focused surface acoustic waves[J]. Lab on a Chip, 2016, 17(1):91-103. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f1d05131302d8450048343005160ab6f
|
[15] |
IRANMANESH M, HULLIGER J. Magnetic separation:its application in mining, waste purification, medicine, biochemistry and chemistry[J]. Chemical Society Reviews, 2017, 46(19):5925-5934. DOI: 10.1039/C7CS00230K
|
[16] |
DASH S, MOHANTY S. Dielectrophoretic separation of micron and submicron particles:a review[J]. Electrophoresis, 2014, 35(18):2656-2672. DOI: 10.1002/elps.201400084
|
[17] |
HUNT T P, WESTERVELT R M. Dielectrophoresis tweezers for single cell manipulation[J]. Biomed Microdevices, 2006, 8(3):227-230. DOI: 10.1007/s10544-006-8170-z
|
[18] |
SONG H, ROSANO J M, WANG Y, et al. Continuous-flow sorting of stem cells and differentiation products based on dielectrophoresis[J]. Lab on a Chip, 2015, 15(5):1320-1328. DOI: 10.1039/C4LC01253D
|
[19] |
Han S I, Kim H S, Han A. In-droplet cell concentration using dielectrophoresis[J]. Biosensors and Bioelectronics, 2017, 97:41-45. DOI: 10.1016/j.bios.2017.05.036
|
[20] |
TANG S Y, KHOSHMANESH K, SIVAN V, et al. Liquid metal enabled pump[J]. Proceedings of the National Academy of Sciences, 2014, 111(9):3304-3309. DOI: 10.1073/pnas.1319878111
|
[21] |
WANG M F, JIN M J, JIN X J, et al. Modeling of movement of liquid metal droplets driven by an electric field[J]. Physical Chemistry Chemical Physics, 2017, 19(28):18505-18513. DOI: 10.1039/C7CP02798B
|
[22] |
KHOSHMANESH K, TANG S Y, ZHU J Y, et al. Liquid metal enabled microfluidics[J]. Lab on a Chip, 2017, 17(6):974-993. DOI: 10.1039/C7LC00046D
|
[1] | WANG Shang, CHEN Binnian, CHEN Guoyong, YANG Xiaoquan, Weng Peifen. Mechanism and control of airframe noise of large passenger aircraft[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(3): 63-78. DOI: 10.11729/syltlx20230058 |
[2] | LI Yong. Progress of research on airfoil trailing edge tonal noise at low-moderate Reynolds number and its control[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(3): 38-49. DOI: 10.11729/syltlx20230062 |
[3] | WEI Renke, LIU Yu. Review of slat noise mechanism and control in high-lift devices[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(3): 20-37. DOI: 10.11729/syltlx20230017 |
[4] | LIAN Jianxin, CHEN Weijie, QIAO Weiyang, DU Jun, LIU Yuanshi, LIU Bin. Experimental study on the directivity and noise reduction of the blade leading-edge noise using Inverse Method SODIX based on microphone array[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(1): 67-78. DOI: 10.11729/syltlx20230020 |
[5] | ZHOU Zhiteng, WANG Shizhao. A quadrupole correction model to suppress spurious sound with moving permeable integral surfaces[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(1): 46-56. DOI: 10.11729/syltlx20230072 |
[6] | HU Yasen, ZHANG Pengjunyi, ZHUANG Guohui, WAN Zhenhua, SUN Dejun. Noise control of serrated trailing edge airfoil under small incidence angle[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(1): 28-36. DOI: 10.11729/syltlx20230031 |
[7] | ZHANG Junlong, LEI Hongsheng, ZHAO Yu, LI Jie. Measurement and correction of high frequency jet noise[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 16-21. DOI: 10.11729/syltlx20190103 |
[8] | LIU Jun, CAI Jinsheng, ZHOU Fangqi. Mach number sensitivity analysis of cavity noise[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(3): 104-110. DOI: 10.11729/syltlx20190079 |
[9] | Wang Yigang, Jiao Yan, Zhang Jie. Evaluation of simplified automobile wind noise model based on main propagation path of sound and vibration[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(6): 90-94. DOI: 10.11729/syltlx20190106 |
[10] | Wang Xiansheng, Yang Dangguo, Liu Jun, Zhou Fangqi, Shi Ao. Progress of research on noise induced by compressible flow over cavities[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(3): 1-16. DOI: 10.11729/syltlx20170132 |