Citation: | ZHOU Z T, WANG S Z. A quadrupole correction model to suppress spurious sound with moving permeable integral surfaces[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(1): 46-56. DOI: 10.11729/syltlx20230072 |
[1] |
JI J C, WANG C, WANG L A, et al. A recursive approach for aeroacoustic phased array measurements in wind tunnels[J]. The Journal of the Acoustical Society of America, 2021, 150(1): 417–427. doi: 10.1121/10.0005543
|
[2] |
LYU B, AZARPEYVAND M, SINAYOKO S. Prediction of noise from serrated trailing edges[J]. Journal of Fluid Mechanics, 2016, 793: 556–588. doi: 10.1017/jfm.2016.132
|
[3] |
TIAN H P, LYU B S. Prediction of broadband noise from rotating blade elements with serrated trailing edges[J]. Physics of Fluids, 2022, 34(8): 085109. doi: 10.1063/5.0094423
|
[4] |
SUN X F, JIANG Y S, LIANG A, et al. An immersed boundary computational model for acoustic scattering problems with complex geometries[J]. The Journal of the Acoustical Society of America, 2012, 132(5): 3190–3199. doi: 10.1121/1.4757747
|
[5] |
LI H, LUO Y, ZHANG S H. Assessment of upwind/symmetric WENO schemes for direct numerical simulation of screech tone in supersonic jet[J]. Journal of Scientific Computing, 2021, 87(1): 1–39. doi: 10.1007/s10915-020-01407-6
|
[6] |
FFOWCS WILLIAMS J E, HAWKINGS D L. Sound generation by turbulence and surfaces in arbitrary motion[J]. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences, 1969, 264(1151): 321–342. doi: 10.1098/rsta.1969.0031
|
[7] |
TAY W B, LU Z B, RAMESH S S, et al. Numerical simulations of serrated propellers to reduce noise[M]//PANDA D K. Supercomputing Frontiers. Cham: Springer International Publishing, 2020: 87-103. doi: 10.1007/978-3-030-48842-0_6
|
[8] |
SHUR M L, SPALART P R, STRELETS M K. Noise prediction for increasingly complex jets. part I: methods and tests[J]. International Journal of Aeroacoustics, 2005, 4(3): 213–245. doi: 10.1260/1475472054771376
|
[9] |
RICHARDS S K, CHEN X X, HUANG X, et al. Computation of fan noise radiation through an engine exhaust geometry with flow[J]. International Journal of Aeroacoustics, 2007, 6(3): 223–241. doi: 10.1260/147547207782419534
|
[10] |
ZHANG Y F, CHEN H X, WANG K, et al. Aeroacoustic prediction of a multi-element airfoil using wall-modeled large-eddy simulation[J]. AIAA Journal, 2017, 55(12): 4219–4233. doi: 10.2514/1.j055853
|
[11] |
GAO J H, LI X D. Numerical simulation of the noise from a subsonic jet in static and flight conditions[C]//Proc of the Proceedings of the 25th AIAA/CEAS Aeroacoustics Conference. 2019: AIAA2019-2666. doi: 10.2514/6.2019-2666
|
[12] |
ZHANG P K, LIU Y, LI Z Y, et al. Numerical study on reducing aerodynamic drag and noise of circular cylinders with non-uniform porous coatings[J]. Aerospace Science and Technology, 2020, 107: 106308. doi: 10.1016/j.ast.2020.106308
|
[13] |
LOCKARD D P. An efficient, two-dimensional implementa-tion of the Ffowcs Williams and Hawkings equation[J]. Journal of Sound and Vibration, 2000, 229(4): 897–911. doi: 10.1006/jsvi.1999.2522
|
[14] |
BOZORGI A, SIOZOS-ROUSOULIS L, AHMAD NOURBA-KHSH S, et al. A two-dimensional solution of the FW-H equation for rectilinear motion of sources[J]. Journal of Sound and Vibration, 2017, 388: 216–229. doi: 10.1016/j.jsv.2016.10.035
|
[15] |
SHUR M L, SPALART P R, STRELETS M K. Noise prediction for increasingly complex jets. part II: applications[J]. International Journal of Aeroacoustics, 2005, 4(3): 247–266. doi: 10.1260/1475472054771385
|
[16] |
ZHONG S Y, ZHANG X. A sound extrapolation method for aeroacoustics far-field prediction in presence of vortical waves[J]. Journal of Fluid Mechanics, 2017, 820: 424–450. doi: 10.1017/jfm.2017.219
|
[17] |
ZHONG S Y, ZHANG X. A generalized sound extrapolation method for turbulent flows[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2018, 474(2210): 20170614. doi: 10.1098/rspa.2017.0614
|
[18] |
ZHONG S Y, ZHANG X. On the frequency domain formulation of the generalized sound extrapolation method[J]. The Journal of the Acoustical Society of America, 2018, 144(1): 24–31. doi: 10.1121/1.5044515
|
[19] |
WANG M, LELE S K, MOIN P. Computation of quadrupole noise using acoustic analogy[J]. AIAA Journal, 1996, 34(11): 2247–2254. doi: 10.2514/3.13387
|
[20] |
NITZKORSKI Z, MAHESH K. A dynamic end cap technique for sound computation using the Ffowcs Williams and Hawkings equations[J]. Physics of Fluids, 2014, 26(11): 115101. doi: 10.1063/1.4900876
|
[21] |
LOCKARD D, CASPER J. Permeable surface corrections for Ffowcs Williams and Hawkings integrals[C]//Proc of the 11th AIAA/CEAS Aeroacoustics Conference (26th AIAA Aeroacoustics Conference). 2005. doi: 10.2514/6.2005-2995
|
[22] |
ZHOU Z T, WANG H P, WANG S Z, et al. Lighthill stress flux model for Ffowcs Williams–Hawkings integrals in frequency domain[J]. AIAA Journal, 2021, 59(11): 4809–4814. doi: 10.2514/1.j060070
|
[23] |
ZHOU Z T, WANG H P, WANG S Z. Simplified permeable surface correction for frequency-domain Ffowcs Williams and Hawkings integrals[J]. Theoretical and Applied Mechanics Letters, 2021, 11(4): 100259. doi: 10.1016/j.taml.2021.100259
|
[24] |
ZHOU Z T, ZANG Z Y, WANG H P, et al. Far-field approximations to the derivatives of Green’s function for the Ffowcs Williams and Hawkings equation[J]. Advances in Aerodynamics, 2022, 4(1): 1–23. doi: 10.1186/s42774-022-00109-x
|
[25] |
NAJAFI-YAZDI A, BRÈS G A, MONGEAU L. An acoustic analogy formulation for moving sources in uniformly moving media[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2011, 467(2125): 144–165. doi: 10.1098/rspa.2010.0172
|
[26] |
IKEDA T, ENOMOTO S, YAMAMOTO K, et al. Quadrupole corrections for the permeable-surface Ffowcs Williams–Hawkings equation[J]. AIAA Journal, 2017, 55(7): 2307–2320. doi: 10.2514/1.j055328
|
[27] |
IKEDA T, ENOMOTO S, YAMAMOTO K, et al. Quadrupole effects in the Ffowcs Williams-Hawkings equation using permeable control surface[C]//Proc of the 18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA Aeroacoustics Conference). 2012. doi: 10.2514/6.2012-2069
|
[28] |
ZHOU Z T, WANG H P, ZANG Z Y, et al. A frequency-domain formulation for predicting multi-frequency noise generated by flows with periodically moving boundaries[J]. Journal of Theoretical and Computational Acoustics, 2023, 31(1): 2350001. doi: 10.1142/s2591728523500019
|
[29] |
BRENTNER K S. Numerical algorithms for acoustic integrals with examples for rotor noise prediction[J]. AIAA Journal, 1997, 35(4): 625–630. doi: 10.2514/3.13558
|
[30] |
INOUE O, HATAKEYAMA N. Sound generation by a two-dimensional circular cylinder in a uniform flow[J]. Journal of Fluid Mechanics, 2002, 471: 285–314. doi: 10.1017/s0022112002002124
|
[31] |
GLOERFELT X, PÉROT F, BAILLY C, et al. Flow-induced cylinder noise formulated as a diffraction problem for low Mach numbers[J]. Journal of Sound and Vibration, 2005, 287(1-2): 129–151. doi: 10.1016/j.jsv.2004.10.047
|
[32] |
周志腾, 王洪平, 王士召, 等. 基于关联速度的FW-H积分四极子声源修正模型[J]. 空气动力学学报, 2020, 38(6): 1129–1135. DOI: 10.7638/kqdlxxb-2020.0141
ZHOU Z T, WANG H P, WANG S Z, et al. Quadrupole source term corrections based on correlation functions for Ffowcs Williams and Hawkings integrals[J]. Acta Aerodyna-mica Sinica, 2020, 38(6): 1129–1135. doi: 10.7638/kqdlxxb-2020.0141
|