Turn off MathJax
Article Contents
LI Y. Progress of research on airfoil trailing edge tonal noiseat low-moderate Reynolds number and its control[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(1): 1-12 doi: 10.11729/syltlx20230062
Citation: LI Y. Progress of research on airfoil trailing edge tonal noiseat low-moderate Reynolds number and its control[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(1): 1-12 doi: 10.11729/syltlx20230062

Progress of research on airfoil trailing edge tonal noiseat low-moderate Reynolds number and its control

doi: 10.11729/syltlx20230062
  • Received Date: 2023-05-04
  • Accepted Date: 2023-07-06
  • Rev Recd Date: 2023-06-15
  • Available Online: 2023-10-24
  • This paper summarizes the research on the airfoil trailing edge (TE) tonal noise at low-moderate Reynolds number. Also included are the unsolved problems and their prospected research ideas and roads. The acoustic feedback loop and the vortex shedding are considered to be the two main mechanisms for the generation of airfoil TE tones. The former is formed between the boundary layer and the TE and is associated with the ladder-type discrete tones, while the latter contributes to the single-frequency tonal noise due to global instability. The airfoil TE noise is investigated experimentally in the open/closed wind tunnels and numerically through DNS/LES methods. The development of the T–S waves in the boundary layer is calculated using the linear stability theory, and the vortex shedding is analyzed using the concept of absolute/convective instability. Passive control methods, such as the airfoil leading edge or TE serrations, porous material, and morphing surface, are applied to attenuate the airfoil TE tonal noise. Two main active control strategies are the applications of blowing/suction and the plasma technique. Though the airfoil TE tone at low-moderate Reynolds number has been studied for half a century, some issues still need to be answered, and future development is also prospected.
  • loading
  • [1]
    GOLUBEV V. Recent advances in acoustics of transitional airfoils with feedback-loop interactions: a review[J]. Applied Sciences, 2021, 11(3): 1057. doi: 10.3390/app11031057
    [2]
    LEE S, AYTON L, BERTAGNOLIO F, et al. Turbulent boundary layer trailing-edge noise: theory, computation, experiment, and application[J]. Progress in Aerospace Sciences, 2021, 126: 100737. doi: 10.1016/j.paerosci.2021.100737
    [3]
    WRIGHT S E. The acoustic spectrum of axial flow machines[J]. Journal of Sound and Vibration, 1976, 45(2): 165–223. doi: 10.1016/0022-460X(76)90596-4
    [4]
    STATISTICS MRC. UAV drones–global market outlook (2016–2022)[R]. Report ID: SMRC16075.
    [5]
    PATERSON R W, VOGT P G, FINK M R, et al. Vortex noise of isolated airfoils[J]. Journal of Aircraft, 1973, 10(5): 296–302. doi: 10.2514/3.60229
    [6]
    TAM C K W. Discrete tones of isolated airfoils[J]. The Journal of the Acoustical Society of America, 1974, 55(6): 1173–1177. doi: 10.1121/1.1914682
    [7]
    ZANG B, MAYER Y D, AZARPEYVAND M. An experimental investigation on the mechanism of T-S waves for a NACA 0012 aerofoil[C]//Proc of the 25th AIAA/CEAS Aeroacoustics Conference. 2019. DOI: 10.2514/6.2019-2609
    [8]
    LONGHOUSE R E. Vortex shedding noise of low tip speed, axial flow fans[J]. Journal of Sound and Vibration, 1977, 53(1): 25–46. doi: 10.1016/0022-460X(77)90092-X
    [9]
    ARBEY H, BATAILLE J. Noise generated by airfoil profiles placed in a uniform laminar flow[J]. Journal of Fluid Mechanics, 1983, 134: 33–47. doi: 10.1017/s0022112083003201
    [10]
    KINGAN M J, PEARSE J R. Laminar boundary layer instability noise produced by an aerofoil[J]. Journal of Sound and Vibration, 2009, 322(4-5): 808–828. doi: 10.1016/j.jsv.2008.11.043
    [11]
    PRÖBSTING S, YARUSEVYCH S. Airfoil flow receptivity to simulated tonal noise emissions[J]. Physics of Fluids, 2021, 33(4): 044106. doi: 10.1063/5.0045967
    [12]
    JAISWAL P, PASCO Y, YAKHINA G, et al. Experimental investigation of aerofoil tonal noise at low Mach number[J]. Journal of Fluid Mechanics, 2022, 932: A37. doi: 10.1017/jfm.2021.1018
    [13]
    GOLDSTEIN M E. The evolution of Tollmien-Sclichting waves near a leading edge[J]. Journal of Fluid Mechanics, 1983, 127: 59. doi: 10.1017/s002211208300261x
    [14]
    DESQUESNES G, TERRACOL M, SAGAUT P. Numerical investigation of the tone noise mechanism over laminar airfoils[J]. Journal of Fluid Mechanics, 2007, 591: 155–182. doi: 10.1017/s0022112007007896
    [15]
    YANG Y, PRÖBSTING S, LIU Y, et al. Effect of dual vortex shedding on airfoil tonal noise generation[J]. Physics of Fluids, 2021, 33(7): 075102. doi: 10.1063/5.0050002
    [16]
    ARCONDOULIS E J G, DOOLAN C J, ZANDER A C, et al. A review of trailing edge noise generated by airfoils at low to moderate Reynolds number[J]. Acoustics Australia, 2011, 38(3): 135–139.
    [17]
    TAM C K W, JU H B. Aerofoil tones at moderate Reynolds number[J]. Journal of Fluid Mechanics, 2012, 690: 536–570. doi: 10.1017/jfm.2011.465
    [18]
    ARCONDOULIS E, DOOLAN C J, ZANDER A C, et al. An investigation of airfoil dual acoustic feedback mechanisms at low-to-moderate Reynolds number[J]. Journal of Sound and Vibration, 2019, 460: 114887. doi: 10.1016/j.jsv.2019.114887
    [19]
    YAKHINA G, ROGER M, MOREAU S, et al. Experimental and analytical investigation of the tonal trailing-edge noise radiated by low Reynolds number aerofoils[J]. Acoustics, 2020, 2(2): 293–329. doi: 10.3390/acoustics2020018
    [20]
    WU H, SANDBERG R D, MOREAU S. Stability characteristics of different aerofoil flows at Rec = 150000 and the implications for aerofoil self-noise[J]. Journal of Sound and Vibration, 506: 116152.
    [21]
    CHONG T P, JOSEPH P. “Ladder” structure in tonal noise generated by laminar flow around an airfoil[J]. The Journal of the Acoustical Society of America, 2012, 131(6): EL461–EL467. doi: 10.1121/1.4710952
    [22]
    PLOGMANN B, HERRIG A, WÜRZ W. Experimental investigations of a trailing edge noise feedback mechanism on a NACA 0012 airfoil[J]. Experiments in Fluids, 2013, 54(5): 1480. doi: 10.1007/s00348-013-1480-z
    [23]
    NGUYEN L, GOLUBEV V, MANKBADI R, et al. Numerical investigation of tonal trailing-edge noise radiated by low Reynolds number airfoils[J]. Applied Sciences, 2021, 11(5): 2257. doi: 10.3390/app11052257
    [24]
    PRÖBSTING S, SERPIERI J, SCARANO F. Experimental investigation of aerofoil tonal noise generation[J]. Journal of Fluid Mechanics, 2014, 747: 656–687. doi: 10.1017/jfm.2014.156
    [25]
    PRÖBSTING S, SCARANO F, MORRIS S C. Regimes of tonal noise on an airfoil at moderate Reynolds number[J]. Journal of Fluid Mechanics, 2015, 780: 407–438. doi: 10.1017/jfm.2015.475
    [26]
    PRÖBSTING S, YARUSEVYCH S. Laminar separation bubble development on an airfoil emitting tonal noise[J]. Journal of Fluid Mechanics, 2015, 780: 167–191. doi: 10.1017/jfm.2015.427
    [27]
    NASH E C, LOWSON M V, McALPINE A. Boundary-layer instability noise on aerofoils[J]. Journal of Fluid Mechanics, 1999, 382: 27–61. doi: 10.1017/s002211209800367x
    [28]
    HUERRE P, MONKEWITZ P A. Local and global instabilities in spatially developing flows[J]. Annual Review of Fluid Mechanics, 1990, 22: 473–537. doi: 10.1146/annurev.fl.22.010190.002353
    [29]
    LI Y, MING X. Oscillations of a planar impinging jet induced by a potential-core confined airfoil[J]. European Journal of Mechanics - B/Fluids, 2016, 57: 40–49. doi: 10.1016/j.euromechflu.2016.02.007
    [30]
    McALPINE A, NASH E C, LOWSON M V. On the generation of discrete frequency tones by the flow around an aerofoil[J]. Journal of Sound and Vibration, 1999, 222(5): 753–779. doi: 10.1006/jsvi.1998.2085
    [31]
    JONES L E, SANDBERG R D, SANDHAM N D. Stability and receptivity characteristics of a laminar separation bubble on an aerofoil[J]. Journal of Fluid Mechanics, 2010, 648: 257–296. doi: 10.1017/s0022112009993089
    [32]
    SANDBERG R D, JONES L E, SANDHAM N D, et al. Direct numerical simulations of tonal noise generated by laminar flow past airfoils[J]. Journal of Sound and Vibration, 2009, 320(4-5): 838–858. doi: 10.1016/j.jsv.2008.09.003
    [33]
    KHORRAMI M R, BERKMAN M E, CHOUDHARI M. Unsteady flow computations of a slat with a blunt trailing edge[J]. AIAA Journal, 2000, 38: 2050–2058. doi: 10.2514/3.14649
    [34]
    MAKIYA S, INASAWA A, ASAI M. Vortex shedding and noise radiation from a slat trailing edge[J]. AIAA Journal, 2010, 48(2): 502–509. doi: 10.2514/1.45777
    [35]
    CHONG T P, JOSEPH P F, KINGAN M J. An investigation of airfoil tonal noise at different Reynolds numbers and angles of attack[J]. Applied Acoustics, 2013, 74(1): 38–48. doi: 10.1016/j.apacoust.2012.05.016
    [36]
    FOSAS DE PANDO M, SCHMID P J, SIPP D. A global analysis of tonal noise in flows around aerofoils[J]. Journal of Fluid Mechanics, 2014, 754: 5–38. doi: 10.1017/jfm.2014.356
    [37]
    REDONNET S, SCHMIDT T G. Experimental investigation of the laminar boundary layer vortex-shedding noise by an airfoil within a closed-vein wind tunnel[J]. International Journal of Aeroacoustics, 2022, 21(8): 658–683. doi: 10.1177/1475472x221136882
    [38]
    ARCONDOULIS E, LIU Y, XU P W. An investigation of the facility effects on NACA0012 airfoil tonal noise[C]//Proc of the 25th AIAA/CEAS Aeroacoustics Conference, 2019. doi: 10.2514/6.2019-2607
    [39]
    RICCIARDI T R, ARIAS-RAMIREZ W, WOLF W R. On secondary tones arising in trailing-edge noise at moderate Reynolds numbers[J]. European Journal of Mechanics - B, 2020, 79: 54–66. doi: 10.1016/j.euromechflu.2019.08.015
    [40]
    RICCIARDI T R, WOLF W R, TAIRA K. Transition, intermittency and phase interference effects in airfoil secondary tones and acoustic feedback loop[J]. Journal of Fluid Mechanics, 2022, 937: A23. doi: 10.1017/jfm.2022.129
    [41]
    TANK J, SMITH L, SPEDDING G R. On the possibility (or lack thereof) of agreement between experiment and computation of flows over wings at moderate Reynolds number[J]. Interface Focus, 2017, 7(1): 20160076. doi: 10.1098/rsfs.2016.0076
    [42]
    陈伟杰, 乔渭阳, 仝帆, 等. 前缘锯齿对边界层不稳定噪声的影响[J]. 航空学报, 2016, 37(12): 3634–3645. doi: 10.7527/S1000-6893.2016.0104

    CHEN W J, QIAO W Y, TONG F, et al. Effect of leading-edge serrations on boundary layer instability noise[J]. Acta Aeronauticaet Astronautica Sinica, 2016, 37(12): 3634–3645. doi: 10.7527/S1000-6893.2016.0104
    [43]
    CHONG T P, JOSEPHP P F. An experimental study of airfoil instability tonal noise with trailing edge serrations[J]. Journal of Sound and Vibration, 2013, 332(24): 6335–6358. doi: 10.1016/j.jsv.2013.06.033
    [44]
    CHONG T P, VATHYLAKIS A, JOSEPH P F, et al. Self-noise produced by an airfoil with nonflat plate trailing-edge serrations[J]. AIAA Journal, 2013, 51(11): 2665–2677. doi: 10.2514/1.j052344
    [45]
    许影博, 李晓东. 锯齿型翼型后缘噪声控制实验研究[J]. 空气动力学学报, 2012, 30(1): 120–124. doi: 10.3969/j.issn.0258-1825.2012.01.021

    XU Y B, LI X D. An experiment study of the serrated trailing edge noise[J]. Acta Aerodynamica Sinica, 2012, 30(1): 120–124. doi: 10.3969/j.issn.0258-1825.2012.01.021
    [46]
    LYU B, AZARPEYVAND M, SINAYOKO S. Prediction of noise from serrated trailing edges[J]. Journal of Fluid Mechanics, 2016, 793: 556–588. doi: 10.1017/jfm.2016.132
    [47]
    HU Y S, ZHANG P J Y, WAN Z H, et al. Effects of trailing-edge serration shape on airfoil noise reduction with zero incidence angle[J]. Physics of Fluids, 2022, 34(10): 105108. doi: 10.1063/5.0108565
    [48]
    HU Y S, WAN Z H, YE C C, et al. Noise reduction mechanisms for insert-type serrations of the NACA-0012 airfoil[J]. Journal of Fluid Mechanics, 2022, 941: A57. doi: 10.1017/jfm.2022.337
    [49]
    GELOT M B R, KIM J W. Effect of serrated trailing edges on aerofoil tonal noise[J]. Journal of Fluid Mechanics, 2020, 904: A30. doi: 10.1017/jfm.2020.724
    [50]
    FINEZ A, JACOB M, JONDEAU E, et al. Broadband noise reduction with trailing edge brushes[C]//Proc of the 16th AIAA/CEAS Aeroacoustics Conference. 2010. doi: 10.2514/6.2010-3980
    [51]
    HERR M, DOBRZYNSKI W. Experimental investigations in low-noise trailing edge design[J]. AIAA Journal, 2005, 43(6): 1167–1175. doi: 10.2514/1.11101
    [52]
    GEYER T, SARRADJ E, FRITZSCHE C. Measurement of the noise generation at the trailing edge of porous airfoils[J]. Experiments in Fluids, 2010, 48(2): 291–308. doi: 10.1007/s00348-009-0739-x
    [53]
    SHOWKAT ALI S A, SZOKE M, AZARPEYVAND M, et al. Trailing edge bluntness flow and noise control using porous treatments[C]//Proc of the 22nd AIAA/CEAS Aeroacoustics Conference. 2016. doi: 10.2514/6.2016-2832
    [54]
    AI Q, AZARPEYVAND M, LACHENAL X, et al. Aerodynamic and aeroacoustic performance of airfoils with morphing structures[J]. Wind Energy, 2016, 19(7): 1325–1339. doi: 10.1002/we.1900
    [55]
    WOLF A, LUTZ T, WÜRZ W, et al. Trailing edge noise reduction of wind turbine blades by active flow control[J]. Wind Energy, 2015, 18(5): 909–923. doi: 10.1002/we.1737
    [56]
    SZOKE M, AZARPEYVAND M. Active flow control methods for the reduction of trailing edge noise[C]//Proc of the 23rd AIAA/CEAS Aeroacoustics Conference. 2017. doi: 10.2514/6.2017-3004
    [57]
    RAMIREZ W A, WOLF W. The effects of suction and blowing on tonal noise generation by blunt trailing edges[C]//Proc of the 21st AIAA/CEAS Aeroacoustics Conference. 2015. doi: 10.2514/6.2015-2364
    [58]
    INASAWA A, NINOMIYA C, ASAI M. Suppression of tonal trailing-edge noise from an airfoil using a plasma actuator[J]. AIAA Journal, 2013, 51(7): 1695–1702. doi: 10.2514/1.j052203
    [59]
    INASAWA A, KAGAWA Y. Control of trailing-edge noise from airfoil using a plasma actuator[J]. Journal of Fluid Science and Technology, 2018, 13(1): JFST0003. doi: 10.1299/jfst.2018jfst0003
    [60]
    AL-SADAWI L, CHONG T P, KIM J H. Aerodynamic noise reduction by plasma actuators for a flat plate with blunt trailing edge[J]. Journal of Sound and Vibration, 2019, 439: 173–193. doi: 10.1016/j.jsv.2018.08.029
    [61]
    LI Y, GASTER M. Active control of boundary-layer instabilities[J]. Journal of Fluid Mechanics, 2006, 550: 185. doi: 10.1017/s0022112005008219
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article Metrics

    Article views (154) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return