ZHANG Junlong, LEI Hongsheng, ZHAO Yu, LI Jie. Measurement and correction of high frequency jet noise[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 16-21. DOI: 10.11729/syltlx20190103
Citation: ZHANG Junlong, LEI Hongsheng, ZHAO Yu, LI Jie. Measurement and correction of high frequency jet noise[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 16-21. DOI: 10.11729/syltlx20190103

Measurement and correction of high frequency jet noise

More Information
  • Received Date: August 17, 2019
  • Revised Date: November 11, 2019
  • In order to improve the accuracy of high frequency measurement of jet far field noise, the factors affecting the high frequency measurement of jet noise have been systematically studied based on the experimental method of the strict jet noise simulator test equipment. These factors contain: the directivity of microphone, the frequency response characteristics of microphone, the influence of microphone protective cover, the noise floor of microphone and the effect of atmospheric absorption, etc. The experimental comparison and quantitative analysis of each influence factor have been carried out. Recommendations and correction methods for high frequency jet noise measurement are given. Finally, the location of geometric far field, which is very important for the accurate measurement of the high frequency radiation characteristics of far field jet noise, is proposed based on experimental measurement results.
  • [1]
    LIGHTHILL M J. On sound generated aerodynamically I. general theory[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 1952, 211(1107):564-587.
    [2]
    TAM C K W. Computational aeroacoustics-issues and methods[J]. AIAA Journal, 1995, 33(10):1788-1796. DOI: 10.2514/3.12728
    [3]
    JORDAN P, GERVAIS Y. Subsonic jet aeroacoustics:associating experiment, modelling and simulation[J]. Experiments in Fluids, 2007, 44(1):1-21. DOI: 10.1007/s00348-007-0395-y
    [4]
    AHUJA K. Designing clean jet noise facilities and making accurate jet noise measurements[R]. AIAA-2003-0706, 2003.
    [5]
    SIMONICH J, NARAYANAN S, SCHLINKER R. Data quality and facility issues for model-scale jet noise testing[R]. AIAA-2003-1057, 2003.
    [6]
    PICCIN O. CEPRA19: the ONERA large anechoic facility: a major tool for aeroacousitic measurements[R]. AIAA-2009-3303, 2009.
    [7]
    HENDERSON B S, BOZAK R F. Aeroacoustic experiments with twin jets[R]. NASA/TM-2012-217249, 2012.
    [8]
    PINKER R A. The enhancement of the QinetiQ noise test facility for larger-scale exhaust systems[R]. AIAA 2004-3019, 2004.
    [9]
    BAUER A, BALLARD M, BRETTNACHER J, et al. The development and operation of the MDC anechoic acoustic test facility[R]. AIAA-1980-982, 1980.
    [10]
    庄家煜, 李晓东.喷流噪声控制方法实验研究[J].工程热物理学报, 2008, 29(4):587-590. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcrwlxb200804012

    ZHUANG J Y, LI X D. An experimental study of jet noise suppression methods[J]. Journal of Engineering Thermophysics, 2008, 29(4):587-590. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcrwlxb200804012
    [11]
    KARON A Z, AHUJA K. How small can a nozzle be for accurately scaling jet noise to a larger nozzle?[R]. AIAA-2014-2907, 2014.
    [12]
    GAETA R, AHUJA K. Subtle differences in jet noise scaling with narrow band spectra compared to 1/3-octave band[R]. AIAA-2003-3124, 2003.
    [13]
    BROWN C, BRIDGES J. Small hot jet acoustic rig validation[R]. NASA/TM-2006-214234, 2006.
    [14]
    马大猷, 沈(山豪).声学手册[M].北京: 科学出版社, 2004.
    [15]
    VISWANATHAN K. Instrumentation considerations for accurate jet noise measurements[J]. AIAA Journal, 2006, 44(6):1137-1149. DOI: 10.2514/1.13518
    [16]
    SAE. ARP5534, Application of pure-tone atmospheric absorption losses to one-third octave-band data[S]. SAE International, 2013.
  • Cited by

    Periodical cited type(4)

    1. 卢子寅,张晓源,李进平,马虎. 爆轰驱动惰性气体磁流体发电试验研究. 力学学报. 2023(04): 1019-1027 .
    2. 唐路,刘保林,夏琦,黄铭冶,彭爱武. 喉部面积对盘式磁流体发电机性能影响分析. 科学技术与工程. 2022(06): 2298-2304 .
    3. 化为卓,高岭,陈戈,李益文,巩耕,王延涛,魏彪. 基于等离子体炬的磁流体动力学实验系统. 航空学报. 2022(S2): 4-10 .
    4. 罗凯,汪球,李逸翔,李进平,赵伟. 基于高温气体效应的磁流体流动控制研究进展. 力学学报. 2021(06): 1515-1531 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close