Citation: | LIU Jinsheng, XU Shengjin, WANG Qingyang, BAO Huanhuan, WANG Yong. Review of automotive aerodynamics research based on physical models[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 38-48. DOI: 10.11729/syltlx20190081 |
[1] |
AHMED S R, RAMM G, FALTIN G. Some salient features of the time-averaged ground vehicle wake[R]. SAE Technical Paper 840300, 1984.
|
[2] |
LINDENER N. Aerodynamic testing of road vehicles in open jet wind tunnels[R]. SAE SP-1465, 1999.
|
[3] |
COOPER K R. Closed-test-section wind tunnel blockage corrections for road vehicles[R]. SAE SP-1176, 1996.
|
[4] |
HOWELL J, HICKMAN D. The influence of ground simulation on the aerodynamics of a simple car model[R]. SAE Technical Paper 970134, 1997.
|
[5] |
BEARMAN P W. Some observations on road vehicle wakes[R]. SAE Technical Paper 840301, 1984.
|
[6] |
SIMS-WILLIAMS D B, DOMINY R G. Experimental investigation into unsteadiness and instability in passenger car aerodynamics[R]. SAE Technical Paper 980391, 1998.
|
[7] |
BARLOW J, GUTERRES R, RANZENBACH R, et al. Wake structures of rectangular bodies with radiused edges near a plane surface[R]. SAE Technical Paper 1999-01-0648, 1999.
|
[8] |
KHALIGHI B, ZHANG S, KOROMILAS C, et al. Experimental and computational study of unsteady wake flow behind a bluff body with a drag reduction device[J]. SAE Transactions, 2001, 110(1): 1209-1222. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC027476066
|
[9] |
ARONSON D, BRAHIM S B, PERZON S. On the underbody flow of a simplified estate[R]. SAE Technical Paper 2000-01-0485, 2000.
|
[10] |
ALAM F, WATKINS S, ZIMMER G, et al. Effects of vehicle A-pillar shape on local mean and time-varying flow properties[R]. SAE Technical Paper 2001-01-1086, 2001.
|
[11] |
ROMBERG G F, GUNN J A, LUTZ R G. Thechrysler 3/8-scale pilot wind tunnel[J]. SAE Transactions, 1994, 103(1): 490-513.
|
[12] |
CARR G, STAPLEFORD W. Blockage effects in automotive wind-tunnel testing[R]. SAE Technical Paper 860093, 1986.
|
[13] |
WILLIAMS J, QUINLAN W J, HACKETT J E, et al. A calibration study of CFD for automotive shapes and CD[J]. SAE Transactions, 1994, 103(1): 308-327. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0210682103
|
[14] |
LE GOOD M G, GARRY P K. On the use of reference models in automotive aerodynamics[R]. SAE Technical Paper 2004-01-1308, 2004.
|
[15] |
COGOTTI A. Wake surveys of different car-body shapes with coloured isopressure maps[R]. SAE Technical Paper 840299, 1984.
|
[16] |
COGOTTI A. A parametric study on the ground effect of a simplified car model[J]. SAE Transactions, 1998, 107(1): 180-204.
|
[17] |
THEISSEN P, WOJCIAK J, HEULER K, et al. Experimental investigation of unsteady vehicle aerodynamics under time-dependent flow conditions-Part 1[R]. SAE Technical Paper 2011-01-0177, 2011.
|
[18] |
ZHANG B F, ZHOU Y, TO S. Unsteady flow structures around a high-drag Ahmed body[J]. Journal of Fluid Mechanics, 2015, 777(1): 291-326. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=FLM777\FLM\FLM777\S0022112015003328h.xml
|
[19] |
SCHVTZ T, DES AUTOMOBILS H A. Stromungsmechanik, Warmetechnik, Fahrdynamik, Komfort[M]. Wiesbaden: Springer Vieweg, 2013.
|
[20] |
MAYER W, WICKERN G. The new Audi A6/A7 family-aerodynamic development of different body types on one platform[J]. SAE International Journal of Passenger Cars-Mechanical Systems, 2011, 4(1): 197-206. http://cn.bing.com/academic/profile?id=2dcc205cf7d84995976ac7e8e38e7994&encoded=0&v=paper_preview&mkt=zh-cn
|
[21] |
ZHANG Y C, ZHANG J T, WU K G, et al. Aerodynamic characteristics of MIRA fastback model in experiment and CFD[J]. International Journal of Automotive Technology, 2019, 20(4): 723-737. http://cn.bing.com/academic/profile?id=ee703d1dffd3e5891be429c16a31ed62&encoded=0&v=paper_preview&mkt=zh-cn
|
[22] |
张英潮, 曹惠南, 朱会. MIRA阶背式模型的瞬态流动结构分析[J].湖南大学学报, 2019, 46(8): 50-57. http://d.old.wanfangdata.com.cn/Periodical/hndxxb201908007
ZHANG Y C, CAO H N, ZHU H. Instantaneous flow structure analysis of MIRA notchback model[J]. Journal of Hunan University(Natural Sciences), 2019, 46(8): 50-57. http://d.old.wanfangdata.com.cn/Periodical/hndxxb201908007
|
[23] |
HEFT A I, INDINGER T, ADAMS N A. Experimental and numerical investigation of the DrivAer model[C]//Proc of the ASME 2012 Fluids Engineering Division Summer Meeting collocated with the ASME 2012 Heat Transfer Summer Conference and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels. 2012.
|
[24] |
MACK S, INDINGER T, ADAMS N A, et al. The interior design of a 40% scaled DrivAer body and first experimental results[C]// Proc of the ASME 2012 Fluids Engineering Division Summer Meeting collocated with the ASME 2012 Heat Transfer Summer Conference and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels. 2012.
|
[25] |
MATSUMOTO D, HAAG L, INDINGER T. Investigation of the unsteady external and underhood airflow of the DrivAer model by Dynamic Mode Decomposition Methods[J]. International Journal of Automotive Engineering, 2017, 8(2): 55-62. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=J-STAGE_4264662
|
[26] |
PEICHL M, MACK S, INDINGER T, et al. Numerical investigation of the flow around a generic car using dynamic mode decomposition[C]// Proc of the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting collocated with the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels. 2014.
|
[27] |
DOLCI V, ARINA R. Proper orthogonal decomposition as surrogate model for aerodynamic optimization[J]. International Journal of Aerospace Engineering, 2016, 2016: 1-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000004716828
|
[28] |
BEAUDOIN J F, AIDER J L. Drag and lift reduction of a 3D bluff body using flaps[J]. Experiments in Fluids, 2008, 44(4): 491. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6a867163f48b72948d9bb63948efaa72
|
[29] |
WANG H F, ZHOU Y, ZOU C, et al. Aerodynamic drag reduction of an Ahmed body based on deflectors[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 148: 34-44. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a6c2dd46be03f619f0d43174f6d78e11
|
[30] |
AIDER J L, BEAUDOIN J F O, WESFREID J E. Drag and lift reduction of a 3D bluff-body using active vortex generators[J]. Experiments in Fluids, 2010, 48(5): 771-789. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f9555642aa42411f3c8b332a74ea1687
|
[31] |
ROUMÉAS M, GILLIÉRON P, KOURTA A. Analysis and control of the near-wake flow over a square-back geometry[J]. Computers & Fluids, 2009, 38(1): 60-70. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1a827032168bb5ca96e887f89df929d5
|
[32] |
JOSEPH P, AMANDOLESE X, AIDER J L. Drag reduction on the 25 slant angle Ahmed reference body using pulsed jets[J]. Experiments in Fluids, 2012, 52(5): 1169-1185. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b51591b69a8082e2f9e91a9834f4db9a
|
[33] |
JOSEPH, PIERRIC, AMANDOLESE, et al. Flow control using MEMS pulsed micro-jets on the Ahmed body[J]. Experiments in Fluids, 2013, 54(1): 1-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=854f9f487a591e40057fa30ceae013e9
|
[34] |
ZHANG B, LIU K, ZHOU Y, et al. Active drag reduction of a high-drag Ahmed body based on steady blowing[J]. Journal of Fluid Mechanics, 2018, 856: 351-396. http://cn.bing.com/academic/profile?id=9efd13ac7894491acae952871b129b94&encoded=0&v=paper_preview&mkt=zh-cn
|
[35] |
亚森江·白克力. MIRA车型非光滑表面气流扰动减阻效能研究[D].杭州: 浙江大学, 2015.
BAIKELI Y. Research on the aerodynamic drag reduction efficiency of MIRA model with non-smooth surface based on flow dicturbance[D]. Hangzhou: Zhejiang University, 2015.
|
[36] |
SOARES R F, KNOWLES A, OLIVES S G A, et al. On the aerodynamics of an enclosed-wheel racing car: an assessment and proposal of add-on devices for a fourth, high-performance configuration of the DrivAer model[R]. SAE Technical Paper 2018-01-0725, 2018.
|
[37] |
HEFT A, INDINGER T, ADAMS N. Investigation of unsteady flow structures in the wake of a realistic generic car model[C]// Proc of the 29th AIAA Applied Aerodynamics Conference. 2011.
|
[38] |
ÖSTH J, NOACK B R, KRAJNOVIĆ S, et al. On the need for a nonlinear subscale turbulence term in POD models as exemplified for a high-Reynolds-number flow over an Ahmed body[J]. Journal of Fluid Mechanics, 2014, 747: 518-544. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=FLM747\FLM\FLM747\S0022112014001682h.xml
|
[39] |
GUILMINEAU E. Numerical simulations of flow around a realistic generic car model[J]. SAE International Journal of Passenger Cars-Mechanical Systems, 2014, 7(2): 646-653. http://cn.bing.com/academic/profile?id=a0a9ae6a59cfbbac6993a83e80306c2f&encoded=0&v=paper_preview&mkt=zh-cn
|
[40] |
FORBES D C, PAGE G J, PASSMORE M A, et al. A fully coupled, 6 degree-of-freedom, aerodynamic and vehicle handling crosswind simulation using the DrivAer model[R]. SAE Paper 2016-01-1601, 2016.
|
[41] |
STOLL D, WIEDEMANN J. Active crosswind generation and its effect on the unsteady aerodynamic vehicle properties determined in an open jet wind tunnel[J]. SAE International Journal of Passenger Cars-Mechanical Systems, 2018, 11(5): 429-446. http://cn.bing.com/academic/profile?id=b2604b8d12b945897ca127029b446bbc&encoded=0&v=paper_preview&mkt=zh-cn
|
[42] |
JOSEFSSON E, HAGVALL R, URQUHART M, et al. Numerical analysis of aerodynamic impact on passenger vehicles during cornering[R]. SAE Technical Paper 2018-37-0014, 2018.
|
[43] |
COLLIN C, MACK S, INDINGER T, et al. A numerical and experimental evaluation of open jet wind tunnel interferences using the DrivAer reference model[J]. SAE International Journal of Passenger Cars-Mechanical Systems, 2016, 9(2): 657-679. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a667fb071e58eeb01e973e1f041d8f9a
|
[44] |
RANZENBACH R, BARLOW J B, ESMAILI H. Practical application of the two-variable blockage correction method to automobile shapes[J]. SAE Transactions, 2001, 110(1): 695-707. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC027477795
|
[45] |
HOFFMAN J, MARTINDALE B, ARNETTE S, et al. Effect of test section configuration on aerodynamic drag measurements[J]. SAE Transactions, 2001, 110(1): 680-694. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC027475736
|
[46] |
VON SCHULZ-HAUSMANN F K, VAGT J D. Influence of test-section length and collector area on measurements in a 3/4-open-jet automotive wind tunnels[R]. SAE Technical Paper 880251, 1988.
|
[47] |
HOFFMAN J, MARTINDALE B, ARNETTE S, et al. Development of lift and drag corrections for open jet wind tunnel tests for an extended range of vehicle shapes[R]. SAE Technical Paper 2003-01-0934, 2003.
|
[48] |
CARR G W. A comparison of the ground-plane-suction and moving-belt ground-representation techniques[R]. SAE Technical Paper 880249, 1988.
|
[49] |
BERNDTSSON A, ECKERT W T, MERCKER E. The effect of groundplane boundary layer control on automotive testing in a wind tunnel[J]. SAE Transactions, 1988, 97(1): 215-230. http://cn.bing.com/academic/profile?id=aa73c79eb702f43bcefa9006c7cde1e1&encoded=0&v=paper_preview&mkt=zh-cn
|
[50] |
AZIM A F A. An experimental study of the aerodynamic interference between road vehicles[R]. SAE Technical Paper 940422, 1994.
|
[51] |
JAKIRLIC S, KUTEJ L, BASARA B, et al. Scale-resolving simulation of an 'on-road' overtaking maneuver involving model vehicles[R]. SAE Technical Paper 2018-01-0706, 2018.
|
[52] |
RINGWALL E. Aeroacoustic sound sources around the wheels of a passenger car[D]. Gõteborg: Chalmers University of Technology, 2017.
|
[53] |
LAFONT T, HORAK J, D'AMICO R, et al. Passive treatment solutions for the reduction of vehicle exterior tire noise[R]. SAE Technical Paper 2018-01-1571, 2018.
|
[54] |
SIMMONDS N, TSOUTSANIS P, DRIKAKIS D, et al. Full vehicle aero-thermal cooling drag sensitivity analysis for various radiator pressure drops[R]. SAE Technical Paper 2016-01-1578, 2016.
|
[55] |
廖磊.车轮溅水及其对车身表面污染的仿真研究[D].长春: 吉林大学, 2014.
LIAO L. Numerical research on wheel spray and related body soiling[D]. Changchun: Jilin University, 2014.
|
[1] | ZHANG Hongjian, ZHANG Yanxin, XIONG Jianjun, ZHAO Zhao, RAN Lin, YI Xian. Numerical simulation and experimental research of Lamb wave propagation characteristics in ice[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(2): 68-77. DOI: 10.11729/syltlx20210170 |
[2] | ZHANG Lifen, GE Xin, ZHANG Fei, LIU Zhenxia, MA Dong, LYU Weijin. An ice wind tunnel test study on the scaling law of a rotating cone[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(4): 52-59. DOI: 10.11729/syltlx20200166 |
[3] | LI Weihao, LI Weibin, YI Xian, WANG Yingyu. A correction method of icing testing scaling law with dynamic effects[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(3): 97-103. DOI: 10.11729/syltlx20190166 |
[4] | Long Yongsheng, Hu Zhenzhen, Yuan Jie, Li Haiyan. Design and numerical simulation of an elliptical nozzle[J]. Journal of Experiments in Fluid Mechanics, 2015, (3): 80-86. DOI: 10.11729/syltlx20150045 |
[5] | Shan Li, Zheng Shigui, Yan Jun. Numerical simulation of honeycomb sandwich panel under hypervelocity impact of ice particle[J]. Journal of Experiments in Fluid Mechanics, 2014, (3): 98-103. DOI: 10.11729/syltlx2014pz18 |
[6] | GUO Dong-peng, YAN Han, YAO Ren-tai, XIAO Xue-fu, FAN Dan. A comparison study on numerical and wind-tunnel simulation of flow and dispersion around complex buildings[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(2): 56-62,112. DOI: 10.3969/j.issn.1672-9897.2013.02.011 |
[7] | YI Xian, ZHU Guo-lin, GUI Ye-wei. Modification and evaluation of an icing scaling law[J]. Journal of Experiments in Fluid Mechanics, 2008, 22(2): 84-87,98. DOI: 10.3969/j.issn.1672-9897.2008.02.017 |
[8] | WANG Gang, LIANG Xin-gang. Numerical study on flow structure around slender with sharp nose at lower incidences[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(4): 10-15. DOI: 10.3969/j.issn.1672-9897.2005.04.002 |
[9] | A one-dimensional numerical analysis of supersonic combustor performance[J]. Journal of Experiments in Fluid Mechanics, 2004, 18(3): 36-41. DOI: 10.3969/j.issn.1672-9897.2004.03.008 |
[10] | Pen Qiang. Numerical Simulation of the Diffuser for the Transonic Wind Tunnel[J]. Journal of Experiments in Fluid Mechanics, 1999, 13(2): 89-95. DOI: 10.3969/j.issn.1672-9897.1999.02.014 |
1. |
刘宇,秦梦婕,王强,易贤. 含盐海水飞沫的结冰风洞试验相似准则. 航空学报. 2023(S2): 303-313 .
![]() | |
2. |
刘宇,易贤,王强,李维浩. 结冰风洞试验混合相似转换方法及其验证. 空气动力学学报. 2021(02): 176-183 .
![]() | |
3. |
沈贺,魏搏,姜禹,郭文峰,李岩. 叶片数对垂直轴风力机结冰分布影响风洞试验. 实验流体力学. 2021(04): 67-72 .
![]() | |
4. |
张丽芬,葛鑫,张斐,刘振侠,马栋,吕维进. 旋转帽罩结冰相似准则的冰风洞试验研究. 实验流体力学. 2021(04): 52-59 .
![]() | |
5. |
田永强,蔡晋生,张正科,杨磊磊. 结冰风洞实验中的相似理论. 北京航空航天大学学报. 2020(02): 359-370 .
![]() | |
6. |
李维浩,李伟斌,易贤,王应宇. 考虑动力学效应的结冰试验相似准则修正方法. 实验流体力学. 2020(03): 97-103 .
![]() | |
7. |
施红,王均毅,陈佳敏,丁媛媛,张彤. 过冷大水滴条件下结冰相似准则. 航空动力学报. 2019(05): 1101-1110 .
![]() | |
8. |
马军林,肖京平,王桥,胡丽燕,王强. 飞机结冰相似准则研究进展. 飞行力学. 2019(04): 1-7 .
![]() | |
9. |
杨倩,董威,郭之强,郑梅. 涡扇发动机短舱结冰试验相似方法. 航空动力学报. 2019(09): 1988-2000 .
![]() | |
10. |
杜雁霞,李明,桂业伟,王梓旭. 飞机结冰热力学行为研究综述. 航空学报. 2017(02): 30-41 .
![]() |