Shan Li, Zheng Shigui, Yan Jun. Numerical simulation of honeycomb sandwich panel under hypervelocity impact of ice particle[J]. Journal of Experiments in Fluid Mechanics, 2014, (3): 98-103. DOI: 10.11729/syltlx2014pz18
Citation: Shan Li, Zheng Shigui, Yan Jun. Numerical simulation of honeycomb sandwich panel under hypervelocity impact of ice particle[J]. Journal of Experiments in Fluid Mechanics, 2014, (3): 98-103. DOI: 10.11729/syltlx2014pz18

Numerical simulation of honeycomb sandwich panel under hypervelocity impact of ice particle

More Information
  • With the orbital debris environment worsening,research on the hypervelocity im-pact phenomena of orbital debris attracts more and more interests of investigators all over the world.The density of some orbital debris is close to ice.Honeycomb sandwich panels are the im-portant component parts of spacecraft structures and protect equipments inside.Therefore,re-search on honeycomb sandwich panel under hypervelocity impact of ice particle is very imperative and necessary.In this study,we used numerical simulation method to study honeycomb sand-wich panels which are impacted by ice particles and evaluated their performance of resisting the hypervelocity impact of ice particles.The results show that ice particles can penetrate honeycomb sandwich panels.The ice particle of 1mm in diameter penetrated the honeycomb sandwich panel at the velocity of 12km/s;the ice particle of 2mm in diameter penetrated the honeycomb sand-wich panel at the velocity of 11km/s or 12km/s;the ice particle of 3mm in diameter penetrated the honeycomb sandwich panel at the velocity of 5km/s and above;the ice particle of 4mm or 5mm in diameter penetrated the honeycomb sandwich panel at the velocity of 3km/s and above. When the honeycomb sandwich panels are penetrated,a lot of debris dash out through the hole of the rare panel and will destroy equipments inside the spacecraft.Additionally,when the kinetic energy of ice particles are close,the diameters of the ice particles will affect the simulation results.
  • Related Articles

    [1]ZHONG Fuyu, LE Jialing, TIAN Ye, YUE Maoxiong. Investigation of the combustion process in an ethylene-fueled scramjet combustor[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 34-43. DOI: 10.11729/syltlx20200093
    [2]QI Sheng, LIU Siyu, XIN Shirong, HE Yong, LIU Yingzu, WANG Zhihua. Experimental study on ignition and combustion of pulverized coal particles clouds under laminar and turbulent conditions[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(3): 61-69. DOI: 10.11729/syltlx20200033
    [3]Liu Erwei, Xu Shengli. Flow field visualization for ethylene/air auto-ignition at different pressures and temperatures in a rectangular shock tube[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(1): 62-71. DOI: 10.11729/syltlx20180051
    [4]Liu Bing, He Guoqiang, Qin Fei. Experimental study on ignition process for ethylene high speed jet[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 24-27. DOI: 10.11729/syltlx20180003
    [5]Zhang Wanzhou, Le Jialing, Yang Shunhua, Cheng Wenming, Deng Weixin. Experimental research on ethylene ignition and flame propagation processes for scramj et at Ma4[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(3): 40-46,84. DOI: 10.11729/syltlx20150161
    [6]Li Minglei, Wu Ning, Hou Lingyun, Ren Zhuyin. Research progress on ignition and flame propagation in highly turbulent flows[J]. Journal of Experiments in Fluid Mechanics, 2015, (4): 1-11. DOI: 10.11729/syltlx20150060
    [7]LIAO Qin, XU Sheng-li. The ignition delay measurement of atomized kerosene air mixture in an aerosol shock tube[J]. Journal of Experiments in Fluid Mechanics, 2009, 23(3): 70-74,79. DOI: 10.3969/j.issn.1672-9897.2009.03.015
    [8]WANG Su, CUI Ji-ping, FAN Bing-cheng, HE Yu-zhong. Effect of enhancers on ignition characteristics of heavy hydrocarbon fuels[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(2): 25-28,45. DOI: 10.3969/j.issn.1672-9897.2007.02.006
    [9]GOU Hua-jie, WANG Su, FAN Bing-cheng, HE Yu-zhong, ZHANG Sheng-tao, CUI Ji-ping. Experimental studies of the adsorption in shock tube measurements of the JP-1O ignition delay time[J]. Journal of Experiments in Fluid Mechanics, 2006, 20(4): 69-72. DOI: 10.3969/j.issn.1672-9897.2006.04.013
    [10]SONG Wen-yan, LIU Wei-xiong, HE Wei, BAI Han-chen. Experimental investigation of plasma ignition in supersonic combustor[J]. Journal of Experiments in Fluid Mechanics, 2006, 20(4): 20-24. DOI: 10.3969/j.issn.1672-9897.2006.04.003
  • Cited by

    Periodical cited type(13)

    1. 孔维梁,钟鑫宇,韩涵,刘洪. 过冷大水滴双峰分布特性影响冰形机制的数值模拟研究. 气动研究与试验. 2025(01): 24-35 .
    2. 陈海,郭向东,赵荣,易贤. 基于自研喷嘴的冻雨结冰云雾条件试验匹配方法. 气动研究与试验. 2025(02): 75-81 .
    3. 桑旭,金哲岩,杨志刚,余放. 水滴在气流中变形破碎过程的数值模拟研究. 上海交通大学学报. 2024(04): 419-427 .
    4. 刘翔,刘文淇,赵梁,汝佳兴,卫洪森,张爱聆. 机翼结冰特性及复杂流场分析研究进展. 航空工程进展. 2024(04): 130-142 .
    5. 王利平,王福新,刘洪. 过冷大水滴环境粒径分布模拟方法研究进展. 航空学报. 2024(S1): 6-25 .
    6. 陈勇,孔维梁,刘洪. 飞机过冷大水滴结冰气象条件运行设计挑战. 航空学报. 2023(01): 7-21 .
    7. 李斯,束珺,张志强,顾洪宇. 冰风洞过冷大水滴云雾水滴质量分布模拟. 南京航空航天大学学报. 2023(01): 146-153 .
    8. 陈海,郭向东,赵荣,易贤,王丹. 冻细雨分布匹配的量化评估方法. 南京航空航天大学学报. 2023(02): 233-240 .
    9. 陈方备,戴铮,崔燚,吴健. 有限空间竖直壁面的结冰特性. 航空学报. 2023(S2): 274-284 .
    10. 马金博,付冬梅,王高远,郝莲,王丹. 待机状态下机翼结冰的快速计算方法. 民用飞机设计与研究. 2022(02): 67-75 .
    11. 韩涵,李姚,印子斐,孔维梁,刘洪. 过冷大水滴粒径分布的欧拉-拉格朗日混合抽样算法及对冰型影响. 科学技术与工程. 2022(20): 8960-8971 .
    12. 陈舒越,郭向东,王梓旭,刘森云,吴迎春. 结冰风洞过冷大水滴粒径测量初步研究. 实验流体力学. 2021(03): 22-29 . 本站查看
    13. 施红,王均毅,陈佳敏,丁媛媛,张彤. 过冷大水滴条件下结冰相似准则. 航空动力学报. 2019(05): 1101-1110 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (223) PDF downloads (12) Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close