Volume 37 Issue 2
Apr.  2023
Turn off MathJax
Article Contents
ZHANG H J, ZHANG Y X, XIONG J J, et al. Numerical simulation and experimental research of Lamb wave propagation characteristics in ice[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(2): 68-77 doi: 10.11729/syltlx20210170
Citation: ZHANG H J, ZHANG Y X, XIONG J J, et al. Numerical simulation and experimental research of Lamb wave propagation characteristics in ice[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(2): 68-77 doi: 10.11729/syltlx20210170

Numerical simulation and experimental research of Lamb wave propagation characteristics in ice

doi: 10.11729/syltlx20210170
  • Received Date: 2021-11-01
  • Accepted Date: 2021-12-24
  • Rev Recd Date: 2021-11-13
  • Available Online: 2022-08-29
  • Publish Date: 2023-04-25
  • As one of the most commonly used ultrasonic guided waves, Lamb wave has the characteristics of concentrated energy, wide propagation range and small probe volume. Its application can be extended to the field of ice detection. In order to explore the propagation law of Lamb wave in ice, this paper constructs a physical model based on the Lamb wave propagation research platform of piezoelectric ceramics, and takes COMSOL Multiphysics software as the calculation tool to simulate the propagation of Lamb wave in ice with different thickness and length. On this basis, the Lamb wave ice detection platform was built, and the Lamb wave propagation experiment of the iced aluminum plate was carried out. Combined with the numerical simulation and experimental results, the effects of temperature, ice geometric characteristics and liquid water on the propagation characteristics of Lamb wave are clarified. The results show that the lower the temperature, the faster the group velocity of Lamb wave propagation; In a certain range of ice thickness, the attenuation of piezoelectric voltage amplitude at the receiver increases with ice thickness; The time delay of Lamb wave B1 mode wave at the receiver increases linearly with the increase of ice length; Liquid water only affects A0 mode of Lamb wave, but has little effect on S0 mode. The experimental and numerical simulation results are in good agreement, which provides a theoretical reference for Lamb wave ice detection technology.
  • loading
  • [1]
    易贤. 飞机积冰的数值计算与积冰试验相似准则研究[D]. 绵阳: 中国空气动力研究与发展中心研究生部, 2007.

    YI X. Numerical computation of aircraft icing and study on icing test scaling law[D]. Mianyang: China Aerodynamics Research and Development Center Graduate School, 2007.
    [2]
    林贵平, 卜雪琴, 申晓斌, 等. 飞机结冰与防冰技术[M]. 北京: 北京航空航天大学出版社, 2016.
    [3]
    张杰, 周磊, 张洪, 等. 飞机结冰探测技术[J]. 仪器仪表学报, 2006, 27(12): 1578–1586. doi: 10.19650/j.cnki.cjsi.2006.12.005

    ZHANG J, ZHOU L, ZHANG H, et al. Aircraft icing detection technology[J]. Chinese Journal of Scientific Instrument, 2006, 27(12): 1578–1586. doi: 10.19650/j.cnki.cjsi.2006.12.005
    [4]
    叶林. 基于压电器件的冰传感器[J]. 仪表技术与传感器, 2001(9): 6–7,44. doi: 10.3969/j.issn.1002-1841.2001.09.003

    YE L. A new ice sensor based on piezoelectric device[J]. Instrument Technique and Sensor, 2001(9): 6–7,44. doi: 10.3969/j.issn.1002-1841.2001.09.003
    [5]
    王华, 王以伦, 张滨华. 基于磁致伸缩原理的结冰传感器设计理论[J]. 电工技术学报, 2003, 18(6): 77–79,11. doi: 10.19595/j.cnki.1000-6753.tces.2003.06.016

    WANG H, WANG Y L, ZHANG B H. Theory of designing ice detector based on magnetostriction[J]. Transactions of China Electrotechnical Society, 2003, 18(6): 77–79,11. doi: 10.19595/j.cnki.1000-6753.tces.2003.06.016
    [6]
    张龙浩. 光纤阵列式结冰探测系统的研究[D]. 武汉: 华中科技大学, 2013.

    ZHANG L H. The research of optical fiber array icing detection system[D]. Wuhan: Huazhong University of Science and Technology, 2013.
    [7]
    IKIADES A A, ARMSTRONG D J, HARE G G, et al. Fiber optic sensor technology for air conformal ice detection[C]//Proc SPIE 5272, Industrial and Highway Sensors Technology. 2004, 5272: 357-368. doi: 10.1117/12.516910
    [8]
    LIU Y, BOND L J, HU H. Ultrasonic-attenuation-based technique for ice characterization pertinent to aircraft icing phenomena[J]. AIAA Journal, 2017, 55(5): 1602–1609. doi: 10.2514/1.j055500
    [9]
    LIU Y, CHEN W L, BOND L J, et al. Development of an ultrasonic pulse-echo (UPE) technique for aircraft icing studies[J]. AIP Conference Proceedings, 2014, 1581(1): 1757–1764. doi: 10.1063/1.4865036
    [10]
    LIU Y, CHEN W L, BOND L J, et al. A feasibility study to identify ice types by measuring attenuation of ultrasonic waves for aircraft icing detection[C]//Proceedings of ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting Collocated With the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels. 2014 doi: 10.1115/FEDSM2014-21227
    [11]
    吴荣兴, 胡海柯. 表面波飞机结冰传感器的研究[J]. 压电与声光, 2011, 33(5): 679–682,686. doi: 10.3969/j.issn.1004-2474.2011.05.001

    WU R X, HU H K. Study on surface acoustic wave aircraft ice sensor[J]. Piezoelectrics & Acoustooptics, 2011, 33(5): 679–682,686. doi: 10.3969/j.issn.1004-2474.2011.05.001
    [12]
    江城, 何世堂, 李红浪, 等. 声表面波飞机结冰传感器灵敏度及实验研究[J]. 压电与声光, 2009, 31(4): 458–460,463. doi: 10.3969/j.issn.1004-2474.2009.04.002

    JIANG C, HE S T, LI H L, et al. Study of SAW aircraft ice detector sensitivity[J]. Piezoelectrics & Acoustooptics, 2009, 31(4): 458–460,463. doi: 10.3969/j.issn.1004-2474.2009.04.002
    [13]
    PALACIOS J, ZHU Y, SMITH E, et al. Ultrasonic shear and lamb wave interface stress for helicopter rotor de-icing purposes[C]//Proc of the 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. 2006: 2282. doi: 10.2514/6.2006-2282
    [14]
    张雨杏. 基于SH波的旋翼结冰冰层厚度检测机理研究[D]. 南京: 南京航空航天大学, 2018.

    ZHANG Y X. Study on the mechanism of utilizing SH guided wave in rotors’ ice thickness detection[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018.
    [15]
    LAMB H. On waves in an elastic plate[J]. Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences, 1917, 93(648): 114–128. doi: 10.1098/rspa.1917.0008
    [16]
    徐春广, 李卫彬. 无损检测超声波理论[M]. 北京: 科学出版社, 2020.
    [17]
    张海燕, 他得安, 刘镇清. 层状各向异性复合板中的兰姆波[M]. 北京: 科学出版社, 2008.
    [18]
    VIKTOROV I A. Calculation of phase velocities of surface-waves on boundary of a solid half-space with a liquid layer[J]. Soviet Physics Acoustics-USSR, 1977, 23(6): 541–542.
    [19]
    ROSE J L. Ultrasonic guided waves in solid media[M]. Cambridge: Cambridge University Press, 2014. doi: 10.1017/cbo9781107273610
    [20]
    LOWE M J S. Matrix techniques for modeling ultrasonic waves in multilayered media[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1995, 42(4): 525–542. doi: 10.1109/58.393096
    [21]
    NAYFEH A H. The general problem of elastic wave propagation in multilayered anisotropic media[J]. The Journal of the Acoustical Society of America, 1991, 89(4): 1521–1531. doi: 10.1121/1.400988
    [22]
    刘镇清. 无损检测中的超声兰姆波[J]. 无损检测, 1999(9): 409–413,423.

    LIU Z Q. Ultrasonic lamb waves in nondestructive testing[J]. Nondestructive Testing, 1999(9): 409–413,423.
    [23]
    刘镇清, 张海燕. 固–液–固3层结构板中超声兰姆波的频散特性[J]. 声学技术, 2001, 20(2): 88–91. doi: 10.3969/j.issn.1000-3630.2001.02.013

    LIU Z Q, ZHANG H Y. Dispersion property of ultrasonic Lamb wave in solid-liquid-solid three-layered structure[J]. Technical Acoustics, 2001, 20(2): 88–91. doi: 10.3969/j.issn.1000-3630.2001.02.013
    [24]
    郑祥明, 赵玉珍, 史耀武. 兰姆波频散曲线的计算[J]. 无损检测, 2003, 25(2): 66–68. doi: 10.3969/j.issn.1000-6656.2003.02.002

    ZHENG X M, ZHAO Y Z, SHI Y W. Calculation for lamb wave dispersion curves[J]. Nondestructive Testing, 2003, 25(2): 66–68. doi: 10.3969/j.issn.1000-6656.2003.02.002
    [25]
    白天. 基于压电材料的结冰探测与除冰方法[D]. 南京: 南京航空航天大学, 2015.
    [26]
    吴荣兴, 李建中, 于兰珍, 等. 兰姆波飞机结冰传感器的最佳工作模态研究[J]. 工业安全与环保, 2016, 42(7): 8–10,14. doi: 10.3969/j.issn.1001-425X.2016.07.003

    WU R X, LI J Z, YU L Z, et al. Analysis of optimal functioning modes of lamb wave aircraft ice sensor[J]. Industrial Safety and Environmental Protection, 2016, 42(7): 8–10,14. doi: 10.3969/j.issn.1001-425X.2016.07.003
    [27]
    朱程香, 张玉雷, 朱春玲, 等. 风力机超声导波结冰探测方法的数值和试验研究[J]. 中国科学(物理学 力学 天文学), 2016, 46(12): 56–63. doi: 10.1360/SSPMA2016-00290

    ZHU C X, ZHANG Y L, ZHU C L, et al. Numerical and experimental study on icing detection of wind turbine blade based on ultrasonic guided wave[J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2016, 46(12): 56–63. doi: 10.1360/SSPMA2016-00290
    [28]
    肖龙. 基于超声导波的旋翼结冰冰层检测机理研究[D]. 南京: 南京航空航天大学, 2017.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)

    Article Metrics

    Article views (473) PDF downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return