Citation: | ZHU Hao, ZHANG Bingbing, YU Yifu. Effect of non-ideal opening behavior of diaphragm on the operation of free piston shock tunnels[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 55-59. DOI: 10.11729/syltlx20190023 |
[1] |
GAI S L. Free piston shock tunnels: developments and capabilities[J]. Progress in Aerospace Science, 1992, 29(1): 1-41. DOI: 10.1016/0376-0421(92)90002-Y
|
[2] |
STALKER R J. Modern developments in hypersonic wind tunnels[J]. Aeronautical Journal, 2006, 110(1103): 21-39. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c8d3de576f57b3136dbdb156389d6d21
|
[3] |
HORNUNG H G. Ground testing for hypervelocity flow, capabilities and limitations[R]. RTO-EN-AVT-186, 2010.
|
[4] |
HENSHALL B D. On some aspects of the use of shock tubes in aerodynamics research[R]. Aeronautical Research Council Technical Report 3044, 1957.
|
[5] |
HICKMAN R S, FARRAR L C, KYSER J B, et al. Behavior of burst diaphragms in shock tubes[J]. Physics of Fluids, 1975, 18(10): 1249-1252. DOI: 10.1063/1.861010
|
[6] |
OUTA E, TAJIMA K, HAYAKAWA K. Shock tube flow influence by diaphragm opening(two-dimensional flow near the diaphragm)[C]//Proc of the 10th International Symposium on Shock Wave and Shock Tube. 1975.
|
[7] |
PETRIE-REPAR P J. Numerical simulation of diaphragm rupture[D]. Queensland: University of Queensland, 1997.
|
[8] |
MIZUNO H, SAWADA K, SASOH A. Numerical study of non-ideal diaphragm rupture in expansion tube[R]. AIAA-2002-0650, 2002.
|
[9] |
TANNO H, ITOH K, KOMURO T, et al. Experimental study on the tuned operation of a free piston driver[J]. Shock Waves, 2000, 10(1): 1-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5424569c5e1bfa40f0692d531bd7008e
|
[10] |
ROTHKOPF E M, LOW W. Diaphragm opening process in shock tubes[J]. Physics of Fluids, 1974, 17(6): 1169-1173. DOI: 10.1063/1.1694860
|
[11] |
DREWRY J E, WALENTA Z A. Determination of diaphragm opening-times and use of diaphragm particle traps in a hypersonic shock tube[R]. UTIAS Technical Note No.90, 1965.
|
[12] |
HORNUNG H G. The piston motion in a free-piston driver for shock tubes and tunnels[R]. GALCIT Report FM 88-1, 1988.
|
[13] |
朱浩, 沈清, 宫建.自由活塞激波风洞定压驱动时间研究[J].空气动力学学报, 2014, 32(1): 45-50, 56. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201401007
ZHU H, SHEN Q, GONG J. The constant time of piston driver in free piston shock tunnel[J]. Acta Aerodynamica Sinica, 2014, 32(1): 45-50, 56. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201401007
|
[14] |
ZHANG B B, ZHU H, SHEN J M, et al. Experimental study of the compression process in a free piston shock tunnel FD-21[C]//Proc of the 8th International Conference on Fluid Mechanics (ICFM8). 2018.
|
[1] | DUAN Pengyu, CHEN Xi. Composite drag control and energy flux analysis for wall turbulence[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(4): 1-10. DOI: 10.11729/syltlx20230126 |
[2] | JIA Dewen, CHAI Xin. Multi-objective optimization of flow characteristics in a dual-carrier oxidation catalyst for diesel engines[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20230164 |
[3] | CHEN Jiangli, DING Haiyan, HU Haibao, ZHANG Fan, WEN Jun. Research on real-time display of flow field based on optical flow algorithm[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20240027 |
[4] | MENG Fanzhe, Qin Liping, XIE Luo, SHI Pengfei, HU Haibao. Experimental study on drag reduction characteristics of biopolysaccharide solution[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(2): 56-61. DOI: 10.11729/syltlx20210089 |
[5] | WU Sida, CHEN Kejie, ZENG Xiao, LI Yongjiang, QIN Kairong. An optimization algorithm for deriving the average flow velocity in a shallow microchannel through spatiotemporal concentration gradient[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(5): 19-25. DOI: 10.11729/syltlx20210075 |
[6] | ZHANG Wenyun, HU Haibao, WEN Jun, CAO Gang, REN Liuzhen. Advances in experimental research on Taylor-Couette flow characteristics and drag reduction[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(2): 104-111. DOI: 10.11729/syltlx20190163 |
[7] | Huang Wentao, Xiang Yang, Wang Xiao, Liu Hong, Gu Dingyi. Experimental study on drag-reduction mechanisms based on the physical characteristic of tip vortex[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(5): 53-59. DOI: 10.11729/syltlx20160194 |
[8] | Wu Long, Wang Feng, Le Jialing. A dynamic calibration method for a dynamometric system in impulse combustion facilities[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4): 51-58. DOI: 10.11729/syltlx20160158 |
[9] | Ni Wenbin, Dong Jingang, Liu Shuwei, He Lihui, Fu Zengliang. Application of PID based on adaptive genetic algorithms in wind velocity control system of wind tunnels[J]. Journal of Experiments in Fluid Mechanics, 2015, (5): 84-89. DOI: 10.11729/syltlx20150016 |
[10] | ZHENG Yun, GAO Yong-wei. The application research of genetic algorithm in wind tunnel experiment optimization[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(3): 58-61,75. DOI: 10.3969/j.issn.1672-9897.2007.03.012 |