Turn off MathJax
Article Contents
DUAN P Y, CHEN X. Composite drag control and energy flux analysis for wall turbulence[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230126
Citation: DUAN P Y, CHEN X. Composite drag control and energy flux analysis for wall turbulence[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230126

Composite drag control and energy flux analysis for wall turbulence

doi: 10.11729/syltlx20230126
  • Received Date: 2023-09-28
  • Accepted Date: 2023-11-06
  • Rev Recd Date: 2023-11-02
  • Available Online: 2023-12-28
  • Drag reduction in wall flows is of both fundamental and engineering interest. Here, we review the recent developments in the drag reduction strategy and the underlying mechanism. First, the framework for energy flux analysis of drag control is reviewed, which builds up a quantitative relation between the skin-friction coefficient and the dissipation rate. The framework illustrates how the flux of pumping power and control power is distributed and dissipated by coherent, random, and mean fluid motions, applicable for complex control methods as well. Moreover, a specific large-scale control strategy by spanwise opposed wall-jet forcing is introduced, which reduces near-wall random turbulence intensities by merging velocity streaks together and hence suppressing the generation of streamwise vortices. By injecting control power from coherent motions, the spanwise forcing method achieves a maximum drag reduction rate of approximately 19% in the channel flow at a friction Reynolds number of 180. Furthermore, a composite control method combining large-scale control and opposed wall blowing/suction together, yields approximately 33% drag reduction and 32% net power saving at the same Reynolds number, both higher than that of the individual control method. Finally, we show that applying the large-scale control over riblets, the control efficacy is much higher than that of the riblets alone, hence demonstrating the robustness of the large-scale control method.
  • loading
  • [1]
    ABBAS A, BUGEDA G, FERRER E, et al. Drag reduction via turbulent boundary layer flow control[J]. Science China Technological Sciences, 2017, 60(9): 1281–1290. doi: 10.1007/s11431-016-9013-6
    [2]
    RICCO P, SKOTE M, LESCHZINER M A. A review of turbulent skin-friction drag reduction by near-wall transverse forcing[J]. Progress in Aerospace Sciences, 2021, 123: 100713. doi: 10.1016/j.paerosci.2021.100713
    [3]
    GOLDSTEIN D, HANDLER R, SIROVICH L. Direct numerical simulation of turbulent flow over a modeled riblet covered surface[J]. Journal of Fluid Mechanics, 1995, 302: 333–376. doi: 10.1017/S0022112095004125
    [4]
    WALSH M J. Drag characteristics of V-groove and transverse curvature riblets[M]//Viscous Flow Drag Reduc-tion. New York: AIAA, 1980: 168-184. doi: 10.2514/5.9781600865466.0168.0184
    [5]
    WALSH M J. Turbulent boundary layer drag reduction using riblets[C]//Proceedings of the 20th Aerospace Sciences Meeting. 1982. doi: 10.2514/6.1982-169
    [6]
    BECHERT D W, BARTENWERFER M. The viscous flow on surfaces with longitudinal ribs[J]. Journal of Fluid Mechanics, 1989, 206: 105–129. doi: 10.1017/s0022112089002247
    [7]
    BECHERT D W, BRUSE M, HAGE W, et al. Experiments on drag-reducing surfaces and their optimization with an adjustable geometry[J]. Journal of Fluid Mechanics, 1997, 338: 59–87. doi: 10.1017/S0022112096004673
    [8]
    CUI G Y, PAN C, WU D, et al. Effect of drag reducing riblet surface on coherent structure in turbulent boundary layer[J]. Chinese Journal of Aeronautics, 2019, 32(11): 2433–2442. doi: 10.1016/j.cja.2019.04.023
    [9]
    常跃峰, 姜楠, 夏振炎, 等. 沟槽壁湍流减阻机理的氢气泡流动显示及数字图像分析[J]. 天津大学学报, 2009, 42(9): 839–844. doi: 10.3969/j.issn.0493-2137.2009.09.014

    CHANG Y F, JIANG N, XIA Z Y, et al. Hydrogen bubble flow visualization and digital image analysis for drag reduction mechanism in wall turbulence with groove-riblet surface[J]. Journal of Tianjin University, 2009, 42(9): 839–844. doi: 10.3969/j.issn.0493-2137.2009.09.014
    [10]
    CHOI H, MOIN P, KIM J. Direct numerical simulation of turbulent flow over riblets[J]. Journal of Fluid Mechanics, 1993, 255: 503–539. doi: 10.1017/s0022112093002575
    [11]
    CHU D C, KARNIADAKIS G E. A direct numerical simulation of laminar and turbulent flow over riblet-mounted surfaces[J]. Journal of Fluid Mechanics, 1993, 250: 1–42. doi: 10.1017/s0022112093001363
    [12]
    GARCÍA-MAYORAL R, JIMÉNEZ J. Hydrodynamic stability and breakdown of the viscous regime over riblets[J]. Journal of Fluid Mechanics, 2011, 678: 317–347. doi: 10.1017/jfm.2011.114
    [13]
    LI W P, LIU H. Two-point statistics of coherent structures in turbulent flow over riblet-mounted surfaces[J]. Acta Mechanica Sinica, 2019, 35(3): 457–471. doi: 10.1007/s10409-018-0828-2
    [14]
    LI W P. Turbulence statistics of flow over a drag-reducing and a drag-increasing riblet-mounted surface[J]. Aerospace Science and Technology, 2020, 104: 106003. doi: 10.1016/j.ast.2020.106003
    [15]
    MODESTI D, ENDRIKAT S, HUTCHINS N, et al. Dispersive stresses in turbulent flow over riblets[J]. Journal of Fluid Mechanics, 2021, 917: A55. doi: 10.1017/jfm.2021.310
    [16]
    YAO J, CHEN X, HUSSAIN F. Reynolds number effect on drag control via spanwise wall oscillation in turbulent channel flows[J]. Physics of Fluids, 2019, 31(8): 085108. doi: 10.1063/1.5111651
    [17]
    MARUSIC I, CHANDRAN D, ROUHI A, et al. An energy-efficient pathway to turbulent drag reduction[J]. Nature Communications, 2021, 12: 5805. doi: 10.1038/s41467-021-26128-8
    [18]
    CHOI H, MOIN P, KIM J. Active turbulence control for drag reduction in wall-bounded flows[J]. Journal of Fluid Mechanics, 1994, 262: 75–110. doi: 10.1017/s0022112094000431
    [19]
    DENG B Q, XU C X. Influence of active control on STG-based generation of streamwise vortices in near-wall turbulence[J]. Journal of Fluid Mechanics, 2012, 710: 234–259. doi: 10.1017/jfm.2012.361
    [20]
    XIA Q J, HUANG W X, XU C X, et al. Direct numerical simulation of spatially developing turbulent boundary layers with opposition control[J]. Fluid Dynamics Research, 2015, 47(2): 025503. doi: 10.1088/0169-5983/47/2/025503
    [21]
    YAO J, HUSSAIN F. Drag reduction via opposition control in a compressible turbulent channel[J]. Physical Review Fluids, 2021, 6(11): 114602. doi: 10.1103/PhysRevFluids.6.114602
    [22]
    JI Y, YAO J, HUSSAIN F, et al. Vorticity transports in turbulent channels under large-scale control via spanwise wall jet forcing[J]. Physics of Fluids, 2021, 33(9): 095112. doi: 10.1063/5.0062937
    [23]
    YAO J, CHEN X, THOMAS F, et al. Large-scale control strategy for drag reduction in turbulent channel flows[J]. Physical Review Fluids, 2017, 2(6): 062601. doi: 10.1103/physrevfluids.2.062601
    [24]
    YAO J, CHEN X, HUSSAIN F. Drag control in wall-bounded turbulent flows via spanwise opposed wall-jet forcing[J]. Journal of Fluid Mechanics, 2018, 852: 678–709. doi: 10.1017/jfm.2018.553
    [25]
    CHEN X, YAO J, HUSSAIN F. Theoretical framework for energy flux analysis of channels under drag control[J]. Physical Review Fluids, 2021, 6: 013902. doi: 10.1103/physrevfluids.6.013902
    [26]
    CHENG X Q, WONG C W, HUSSAIN F, et al. Flat plate drag reduction using plasma-generated streamwise vortices[J]. Journal of Fluid Mechanics, 2021, 918: A24. doi: 10.1017/jfm.2021.311
    [27]
    WONG C W, ZHOU Y, LI Y Z, et al. Active drag reduction in a turbulent boundary layer based on plasma-actuator-generated streamwise vortices[C]//Proceeding of the 9th International Symposium on Turbulence and Shear Flow Phenomena. 2015.
    [28]
    张奕, 潘翀, 窦建宇, 等. 微型涡流发生器影响下的湍流边界层流场与摩阻特性[J]. 实验流体力学, 2023, 37(4): 48–58. doi: 10.11729/syltlx20230027

    ZHANG Y, PAN C, DOU J Y, et al. Flowfield and friction characteristics downstream of mirco vortex generator in turbulent boundary layer[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 48–58. doi: 10.11729/syltlx20230027
    [29]
    LI B H, WANG K J, WANG Y F, et al. Experimental investigation on drag reduction in a turbulent boundary layer with a submerged synthetic jet[J]. Chinese Physics B, 2022, 31(2): 024702. doi: 10.1088/1674-1056/ac0da6
    [30]
    IUSO G, ONORATO M, SPAZZINI P G, et al. Wall turbulence manipulation by large-scale streamwise vortices[J]. Journal of Fluid Mechanics, 2002, 473: 23–58. doi: 10.1017/s0022112002002574
    [31]
    YAO J, CHEN X, HUSSAIN F. Composite active drag control in turbulent channel flows[J]. Physical Review Fluids, 2021, 6(5): 054605. doi: 10.1103/physrevfluids.6.054605
    [32]
    FUKAGATA K, IWAMOTO K, KASAGI N. Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows[J]. Physics of Fluids, 2002, 14(11): L73–L76. doi: 10.1063/1.1516779
    [33]
    RENARD N, DECK S. A theoretical decomposition of mean skin friction generation into physical phenomena across the boundary layer[J]. Journal of Fluid Mechanics, 2016, 790: 339–367. doi: 10.1017/jfm.2016.12
    [34]
    LI W P, FAN Y T, MODESTI D, et al. Decomposition of the mean skin-friction drag in compressible turbulent channel flows[J]. Journal of Fluid Mechanics, 2019, 875: 101–123. doi: 10.1017/jfm.2019.499
    [35]
    XIE F, PÉREZ-MUÑOZ J D, QIN N, et al. Drag reduction in wall-bounded turbulence by synthetic jet sheets[J]. Journal of Fluid Mechanics, 2022, 941: A63. doi: 10.1017/jfm.2022.347
    [36]
    SCHOPPA W, HUSSAIN F. A large-scale control strategy for drag reduction in turbulent boundary layers[J]. Physics of Fluids, 1998, 10(5): 1049–1051. doi: 10.1063/1.869789
    [37]
    THOMAS F, CORKE T, HUSSAIN F, et al. Turbulent boundary layer drag reduction by active control of streak transient growth[C]//Proc of the APS Division of Fluid Dynamics Meeting Abstracts. 2016.
    [38]
    王晋军. 沟槽面湍流减阻研究综述[J]. 北京航空航天大学学报, 1998, 24(1): 31–34. doi: 10.13700/j.bh.1001-5965.1998.01.040

    WANG J J. Reviews and prospects in turbulent drag reduction over riblets surface[J]. Journal of Beijing University of Aeronautics and Astronautics, 1998, 24(1): 31–34. doi: 10.13700/j.bh.1001-5965.1998.01.040
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views (88) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return