WU S D,CHEN K J,ZENG X,et al. An optimization algorithm for deriving the average flow velocity in a shallow microchannel through spatiotemporal concentration gradient[J]. Journal of Experiments in Fluid Mechanics, 2021,35(5):19-25.. DOI: 10.11729/syltlx20210075
Citation: WU S D,CHEN K J,ZENG X,et al. An optimization algorithm for deriving the average flow velocity in a shallow microchannel through spatiotemporal concentration gradient[J]. Journal of Experiments in Fluid Mechanics, 2021,35(5):19-25.. DOI: 10.11729/syltlx20210075

An optimization algorithm for deriving the average flow velocity in a shallow microchannel through spatiotemporal concentration gradient

More Information
  • Received Date: July 16, 2021
  • Revised Date: August 05, 2021
  • Available Online: November 03, 2021
  • Precise measurement of the flow velocity in microfluidic channels plays an important role in the application of microfluidic chips for quantitative chemical analysis, sample preparation, drug synthesis, etc. In this study, based on the principle of mass transport in microchannels, an optimization algorithm is proposed to derive the average flow velocity within a shallow microchannel through the spatiotemporal concentration gradient. Firstly, based on the relationship between the flow field and the concentration field in the shallow microchannel governed by the Navier-Stokes equation and the Taylor-Aris dispersion equation, a direct inversion method and an optimization algorithm to derive the average flow velocity are demonstrated respectively. Secondly, the influence of the parameters of the spatiotemporal concentration signals (i.e. frequency, amplitude and diffusion coefficient) on the prediction accuracy of the average velocity has been analyzed using numerical simulation. Finally, experiments using fluorescent dye are carried out to verify the feasibility of the proposed method. Simulation results show that the correlation coefficient between the derived average velocity obtained by the optimization algorithm and the real velocity is one in the absence of noise interference, which indicates high calculation accuracy. In the case of noise interference, the accuracy of the optimization algorithm can be improved by increasing the frequency and amplitude of the dynamic concentration. And a low diffusion coefficient can also improve the accuracy. In the microfluidic experiments, a correlation coefficient between the inversion result of the optimization algorithm and the measurement of the flow sensor can be as high as 0.9814.
  • [1]
    WOOTTON R C R,DEMELLO A J. Microfluidics: Exploiting ele-phants in the room[J]. Nature,2010,464(7290):839-840. doi: 10.1038/464839a
    [2]
    LUCCHETTA D E,VITA F,FRANCESCANGELI D,et al. Optical measurement of flow rate in a microfluidic channel[J]. Microfluidics and Nanofluidics,2016,20(1):9-13. doi: 10.1007/s10404-015-1690-1
    [3]
    PATERLINI-BRECHOT P,BENALI N L. Circulating tumor cells (CTC) detection: Clinical impact and future directions[J]. Cancer Letters,2007,253(2):180-204. doi: 10.1016/j.canlet.2006.12.014
    [4]
    LEI X,LIU B,WU H,et al. The effect of fluid shear stress on fibroblasts and stem cells on plane and groove topographies[J]. Cell Adhesion & Migration,2020,14(1):12-23. doi: 10.1080/19336918.2020.1713532
    [5]
    LI Y,QIN Z,ZHOU L,et al. Collective influence of substrate chemistry with physiological fluid shear stress on human umbilical vein endothelial cells[J]. Cell Biology International,2021:1926-1934. doi: 10.1002/cbin.11632
    [6]
    LIU Y O,KLAAS M,SCHRÖDER W. Measurements of the wall-shear stress distribution in turbulent channel flow using the micro-pillar shear stress sensor MPS3[J]. Experimental Thermal and Fluid Science,2019,106:171-182. doi: 10.1016/j.expthermflusci.2019.04.022
    [7]
    KOO H J,VELEV O D. Design and characterization of hydrogel-based microfluidic devices with biomimetic solute transport net-works[J]. Biomicrofluidics,2017,11(2):104-116. doi: 10.1063/1.4978617
    [8]
    SINTON D. Microscale flow visualization[J]. Microfluidics and Nanofluidics,2004,1(1):2-21. doi: 10.1007/s10404-004-0009-4
    [9]
    KOVALEV A V,YAGODNITSYNA A A,BILSKY A V. Micro-PTV technique application to velocity field measurements in immis-cible liquid-liquid plug flow in microchannels[J]. Journal of Physics: Conference Series,2019,1421:012026. doi: 10.1088/1742-6596/1421/1/012026
    [10]
    QURESHI M H,TIEN W H,LIN Y J P. Performance comparison of particle tracking velocimetry (PTV) and particle image velocimetry (PIV) with long-exposure particle streaks[J]. Measurement Science and Technology,2021,32(2):024008. doi: 10.1088/1361-6501/abb747
    [11]
    黄湛. 标量图像测速原理及数值检验[J]. 实验流体力学,2009,23(2):87-93. DOI: 10.3969/j.issn.1672-9897.2009.02.019

    HUANG Z. The theory and DNS testing of scalar image velocime-try[J]. Journal of Experiments in Fluid Mechanics,2009,23(2):87-93. doi: 10.3969/j.issn.1672-9897.2009.02.019
    [12]
    WERELEY S T,MEINHART C D. Recent advances in micro-particle image velocimetry[J]. Annual Review of Fluid Mechanics,2010,42(1):557-576. doi: 10.1146/annurev-fluid-121108-145427
    [13]
    TANG M,LIU F,LEI J,et al. Simple and convenient microfluidic flow rate measurement based on microbubble image velocimetry[J]. Microfluidics and Nanofluidics,2019,23(11):118-126. doi: 10.1007/s10404-019-2285-z
    [14]
    KIM C S,KIM W,LEE K,et al. High-speed color three-dimensional measurement based on parallel confocal detection with a focus tunable lens[J]. Optics Express,2019,27(20):28466-28479. doi: 10.1364/OE.27.028466
    [15]
    GILLISSEN J J,VILQUIN A,KELLAY H,et al. A space–time in-tegral minimisation method for the reconstruction of velocity fields from measured scalar fields[J]. Journal of Fluid Mechanics,2018,854:348-366. doi: 10.1017/jfm.2018.559
    [16]
    SHELBY J P,CHIU D T. Mapping fast flows over micrometer-length scales using flow-tagging velocimetry and single-molecule detec-tion[J]. Analytical Chemistry,2003,75(6):1387-1392. doi: 10.1021/ac026275+
    [17]
    MAYNES D,WEBB A R. Velocity profile characterization in sub-millimeter diameter tubes using molecular tagging velocimetry[J]. Experiments in Fluids,2002,32(1):3-15. doi: 10.1007/s003480200001
    [18]
    覃开蓉,柳兆荣,徐刚. 具有切应力梯度的平行平板流动腔的构造[J]. 力学季刊,2001,22(3):281-288. DOI: 10.3969/j.issn.0254-0053.2001.03.002

    QIN K R,LIU Z R,XU G. Construction of parallel-plate flow Chambers with shear stress gradients[J]. Chinese Quarterly of Mecha-nics,2001,22(3):281-288. doi: 10.3969/j.issn.0254-0053.2001.03.002
    [19]
    LI Y J,LI Y,CAO T,et al. Transport of dynamic biochemical signals in steady flow in a shallow Y-shaped microfluidic channel: effect of transverse diffusion and longitudinal dispersion[J]. Journal of Biome-chanical Engineering,2013,135(12):121011. doi: 10.1115/1.4025774
    [20]
    徐刚,覃开蓉,柳兆荣. 平行平板流动腔脉动流切应力的计算[J]. 力学季刊,2000,21(1):45-51. DOI: 10.15959/j.cnki.0254-0053.2000.01.009

    XU G,QIN K R,LIU Z R. Calculation of the shear stress in the parallel-plate flow chamber under pulsatile flow condition[J]. Chi-nese Quarterly of Mechanics,2000,21(1):45-51. doi: 10.15959/j.cnki.0254-0053.2000.01.009
  • Related Articles

    [1]ZHU Dongyu, FENG Qiang, Han Xiaotao, Yang Ximing, Cui Xiaochun, Yuan Li. Researches on a large natural moveable icing wind tunnel and test methods[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(1): 52-61. DOI: 10.11729/syltlx20210100
    [2]GUO Xiangdong, ZHANG Pingtao, ZHAO Xianli, YANG Shengke, LIN Wei. The compliance verification of thermodynamic flowfield in the large icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(5): 79-88. DOI: 10.11729/syltlx20190113
    [3]ZHU Xinxin, LONG Yongsheng, SHI Youan, YANG Qingtao, ZHOU Ping, ZHAO Shunhong. Optimal design of steady enthalpy probe and test verification[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 87-93. DOI: 10.11729/syltlx20190062
    [4]Zhang Hui, Fan Litao. Correlation analysis of large low speed wind tunnel test on CHN-T1 calibration model[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 106-111. DOI: 10.11729/syltlx20180046
    [5]Gao Guochi, Li Baoliang, Ding Li, Wang Zixu, Ni Zhangsong. Icing wind tunnel test technology for pneumatic de-icing aircraft[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(2): 95-101. DOI: 10.11729/syltlx20180064
    [6]Wang Zixu, Shen Hao, Guo Long, Guo Xiangdong, Ni Zhangsong. Cloud calibration method of 3m×2m icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 61-67. DOI: 10.11729/syltlx20170163
    [7]Zhou Feng, Feng Lijuan, Xu Chaojun, Zhao Keliang, Han Zhirong. Determination and verification of critical ice shape for the certification of civil aircraft[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(2): 8-13. DOI: 10.11729/syltlx20160019
    [8]Shen Chen, Yang Zhigang. Numerical methods exploration and experimental validation of Ahmed model with consideration of fluid-solid-interaction effect[J]. Journal of Experiments in Fluid Mechanics, 2014, (4): 37-42. DOI: 10.11729/syltlx20130017
    [9]YUAN Hong-gang, YANG Yong-dong, ZHANG Gui-chuan, HUANG Ming-qi. Improving techniques and validating of rotor and fuselage compound model test stand[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(4): 87-90. DOI: 10.3969/j.issn.1672-9897.2012.04.018
    [10]GUO Shan-guang, LIU Jun, JIN Liang, LUO Shi-bin. Numerical simulation and experiment validation on shock oscillations of inner flow path of hypersonic vehicle[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(1): 7-11. DOI: 10.3969/j.issn.1672-9897.2012.01.002
  • Cited by

    Periodical cited type(0)

    Other cited types(3)

Catalog

    Article Metrics

    Article views (601) PDF downloads (50) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close