Volume 37 Issue 2
Apr.  2023
Turn off MathJax
Article Contents
MENG F Z, QIN L P, XIE L, et al. Experimental study on drag reduction characteristics of biopolysaccharide solution[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(2): 56-61 doi: 10.11729/syltlx20210089
Citation: MENG F Z, QIN L P, XIE L, et al. Experimental study on drag reduction characteristics of biopolysaccharide solution[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(2): 56-61 doi: 10.11729/syltlx20210089

Experimental study on drag reduction characteristics of biopolysaccharide solution

doi: 10.11729/syltlx20210089
  • Received Date: 2021-08-09
  • Accepted Date: 2021-09-19
  • Rev Recd Date: 2021-09-01
  • Available Online: 2021-12-13
  • Publish Date: 2023-04-25
  • In order to obtain the underwater drag reduction performance of the biopolysac-charide solution, the drag reduction characteristics of four biopolysaccharide solutions of guar gum, xanthan gum, tragacanth gum and locust bean gum were tested in the gravity circulating water tank experimental system. The influence law of the injection rate, Reynolds number and injection mass fraction on the drag reduction is shown. The results show that the four biopoly-saccharide solutions have significant spray drag reduction effects, and the locust bean gum solution has the highest drag reduction rate (14.3%). At a constant Reynolds number, with the increase of the injection rate, the drag reduction rate of each polysaccharide solution increases significantly, and shows different trends after reaching the peak value of drag reduction. The drag reduction effect of the polysaccharide solution is better when the Reynolds number is small (<2.0×104). With the increase of the Reynolds number, the drag reduction law of the polysac-charide solution shows differentiation. Excessive injection mass fraction would reduce the drag reduction effect of the polysaccharide solution, and increasing Reynolds number would cause the phenomenon of “peak shift” with the increase of the mass fraction. By introducing relative injection mass fraction, the effects of the injection rate, Reynolds number and injection mass fraction on drag reduction are coupled with each other. With the increase of relative injection mass fraction, the drag reduction rate of each polysaccharide solution increases first and then decreases. Finally, based on the injection spray mass fraction, the drag reduction law of the polysaccharide solution was explained preliminarily.
  • loading
  • [1]
    ALJALLIS E, SARSHAR M A, DATLA R, et al. Experimental study of skin friction drag reduction on superhydrophobic flat plates in high Reynolds number boundary layer flow[J]. Physics of Fluids, 2013, 25(2): 025103. doi: 10.1063/1.4791602
    [2]
    LING H J, KATZ J, FU M, et al. Effect of Reynolds number and saturation level on gas diffusion in and out of a superhydrophobic surface[J]. Physical Review Fluids, 2017, 2(12): 124005. doi: 10.1103/physrevfluids.2.124005
    [3]
    CHOI W, BYEON H, PARK J Y, et al. Effects of pressure gradient on stability and drag reduction of superhydro-phobic surfaces[J]. Applied Physics Letters, 2019, 114(10): 101603. doi: 10.1063/1.5085081
    [4]
    PARK S R, WALLACE J M. Flow alteration and drag reduction by riblets in a turbulent boundary layer[J]. AIAA Journal, 1994, 32(1): 31–38. doi: 10.2514/3.11947
    [5]
    TANG Y P, CLARK D G. On near-wall turbulence-generating events in a turbulent boundary layer on a riblet surface[J]. Applied Scientific Research, 1993, 50(3-4): 215–232. doi: 10.1007/BF00850558
    [6]
    冯家兴, 胡海豹, 卢丙举, 等. 超疏水沟槽表面通气减阻实验研究[J]. 力学学报, 2020, 52(1): 24–30. doi: 10.6052/0459-1879-19-279

    FENG J X, HU H B, LU B J, et al. Experimental study on drag reduction characteristics of superhydrophobic groove surfaces with ventilation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 24–30. doi: 10.6052/0459-1879-19-279
    [7]
    KWON B H, KIM H H, JEON H J, et al. Experimental study on the reduction of skin frictional drag in pipe flow by using convex air bubbles[J]. Experiments in Fluids, 2014, 55(4): 1–11. doi: 10.1007/s00348-014-1722-8
    [8]
    ELBING B R, WINKEL E S, LAY K A, et al. Bubble-induced skin-friction drag reduction and the abrupt transition to air-layer drag reduction[J]. Journal of Fluid Mechanics, 2008, 612: 201–236. doi: 10.1017/s0022112008003029
    [9]
    宋武超, 王聪, 魏英杰, 等. 水下航行体微气泡减阻特性试验研究[J]. 振动与冲击, 2019, 38(5): 203–208,228. doi: 10.13465/j.cnki.jvs.2019.05.029

    SONG W C, WANG C, WEI Y J, et al. Tests for microbubble drag reduction features of an underwater vehicle[J]. Journal of Vibration and Shock, 2019, 38(5): 203–208,228. doi: 10.13465/j.cnki.jvs.2019.05.029
    [10]
    TOMS B A. Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers: The 1st International Congress on Rheology[C]//Proc of the 1st International Congress on Rheology. 1948.
    [11]
    BROSTOW W. Drag reduction and mechanical degradation in polymer solutions in flow[J]. Polymer, 1983, 24(5): 631–638. doi: 10.1016/0032-3861(83)90119-2
    [12]
    ELBING B R, PERLIN M, DOWLING D R, et al. Modification of the mean near-wall velocity profile of a high-Reynolds number turbulent boundary layer with the injection of drag-reducing polymer solutions[J]. Physics of Fluids, 2013, 25(8): 085103. doi: 10.1063/1.4817073
    [13]
    任刘珍, 张庆辉, 陈少强, 等. 管道内均匀与非均匀PEO溶液湍流减阻特性研究[J]. 实验力学, 2019, 34(2): 217–223. doi: 10.750/1001-1888-17-188

    REN L Z, ZHANG Q H, CHEN S Q, et al. Study of the turbulent flow drag reduction characteristics of homoge-neous and inhomogeneous PEO solution in pipeline flow[J]. Journal of Experimental Mechanics, 2019, 34(2): 217–223. doi: 10.750/1001-1888-17-188
    [14]
    王青会, 刘冬洁, 魏进家. 阳离子型表面活性剂与非离子型聚合物相互作用减阻研究[J]. 西安交通大学学报, 2018, 52(1): 26–32. doi: 10.7652/xjtuxb201801005

    WANG Q H, LIU D J, WEI J J. Investigation on the drag reduction by interaction of cationic surfactant with nonionic polymer[J]. Journal of Xi'an Jiaotong University, 2018, 52(1): 26–32. doi: 10.7652/xjtuxb201801005
    [15]
    MAHMOOD W K, KHADUM W A, EMAN E, et al. Biopolymer-surfactant complexes as flow enhancers: charac-terization and performance evaluation[J]. Applied Rheology, 2019, 29(1): 12–20. doi: 10.1515/arh-2019-0002
    [16]
    PANG M J, XIE C C, ZHANG Z, et al. Experimental studies on drag reduction by coupled addition of nonionic polymer poly(ethylene oxide) and cationic surfactant cetyl-trimethyl ammonium chloride[J]. Asia-Pacific Journal of Chemical Engineering, 2018, 13(4): e2218. doi: 10.1002/apj.2218
    [17]
    WINKEL E S, OWEIS G F, VANAPALLI S A, et al. High-Reynolds-number turbulent boundary layer friction drag reduction from wall-injected polymer solutions[J]. Journal of Fluid Mechanics, 2009, 621: 259–288. doi: 10.1017/s0022112008004874
    [18]
    MOTOZAWA M, KUROSAWA T, XU H N, et al. Experimental study on turbulent drag reduction and polymer mass fraction distribution with blowing polymer solution from the channel wall[C]//Proceedings of 2010 14th International Heat Transfer Conference. 2011: 797-805. doi: 10.1115/IHTC14-23199
    [19]
    SOARES E J. Review of mechanical degradation and de-aggregation of drag reducing polymers in turbulent flows[J]. Journal of Non-Newtonian Fluid Mechanics, 2020, 276: 104225. doi: 10.1016/j.jnnfm.2019.104225
    [20]
    ABDUL BARI H A, KAMARULIZAM S N, MAN R C. Investigating drag reduction characteristic using okra mucilage as new drag reduction agent[J]. Journal of Applied Sciences, 2011, 11(14): 2554–2561. doi: 10.3923/jas.2011.2554.2561
    [21]
    ABDUL BARI H A, LETCHMANAN K, YUNUS R M. Drag reduction characteristics using aloe vera natural mucilage: an experimental study[J]. Journal of Applied Sciences, 2011, 11(6): 1039–1043. doi: 10.3923/jas.2011.1039.1043
    [22]
    COELHO E C, BARBOSA K C O, SOARES E J, et al. Okra as a drag reducer for high Reynolds numbers water flows[J]. Rheologica Acta, 2016, 55(11-12): 983–991. doi: 10.1007/s00397-016-0974-z
    [23]
    SOARES E J, SIQUEIRA R N, LEAL L M, et al. The role played by the aging of aloe vera on its drag reduction properties in turbulent flows[J]. Journal of Non-Newtonian Fluid Mechanics, 2019, 265: 1–10. doi: 10.1016/j.jnnfm.2018.12.010
    [24]
    RAJAPPAN A, MCKINLEY G H. Epidermal biopolysac-charides from plant seeds enable biodegradable turbulent drag reduction[J]. Scientific Reports, 2019, 9: 18263. doi: 10.1038/s41598-019-54521-3
    [25]
    KIM C A, LIM S T, CHOI H J, et al. Characterization of drag reducing guar gum in a rotating disk flow[J]. Journal of Applied Polymer Science, 2002, 83(13): 2938–2944. doi: 10.1002/app.10300
    [26]
    CAMPOLO M, SIMEONI M, LAPASIN R, et al. Turbulent drag reduction by biopolymers in large scale pipes[J]. Journal of Fluids Engineering, 2015, 137(4): 041102. doi: 10.1115/1.4028799
    [27]
    禹燕飞, 李明义, 赵文斌, 等. 藻类多糖高聚物减阻特性的试验研究[C]//中国力学大会——2013论文摘要集. 2013: 259.
    [28]
    李昌烽, 禹燕飞, 赵文斌, 等. 黄原胶水溶液管道流动减阻特性的试验[J]. 江苏大学学报: 自然科学版, 2015, 36(1): 30–35. doi: 10.3969/j.issn.1671-7775.2015.01.006

    LI C F, YU Y F, ZHAO W B, et al. Experiment on drag reduction characteristics of xanthan gum solution in pipe flow[J]. Journal of Jiangsu University: Natural Science Edition, 2015, 36(1): 30–35. doi: 10.3969/j.issn.1671-7775.2015.01.006
    [29]
    朱波, 赵文斌, 李明义, 等. 黄原胶盐溶液减阻及抗剪切特性的实验研究[J]. 实验流体力学, 2018, 32(5): 61–66. doi: 10.11729/syltlx20180035

    ZHU B, ZHAO W B, LI M Y, et al. Experimental study on drag reduction and anti-shearing characteristics of xanthan gum solution with NaCl[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(5): 61–66. doi: 10.11729/syltlx20180035
    [30]
    WU J, TULIN M P. Drag reduction by ejecting additive solutions into pure-water boundary layer[J]. Journal of Basic Engineering, 1972, 94(4): 749–754. doi: 10.1115/1.3425541
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (2212) PDF downloads(52) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return