Citation: | MENG F Z, QIN L P, XIE L, et al. Experimental study on drag reduction characteristics of biopolysaccharide solution[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(2): 56-61. DOI: 10.11729/syltlx20210089 |
[1] |
ALJALLIS E, SARSHAR M A, DATLA R, et al. Experimental study of skin friction drag reduction on superhydrophobic flat plates in high Reynolds number boundary layer flow[J]. Physics of Fluids, 2013, 25(2): 025103. doi: 10.1063/1.4791602
|
[2] |
LING H J, KATZ J, FU M, et al. Effect of Reynolds number and saturation level on gas diffusion in and out of a superhydrophobic surface[J]. Physical Review Fluids, 2017, 2(12): 124005. doi: 10.1103/physrevfluids.2.124005
|
[3] |
CHOI W, BYEON H, PARK J Y, et al. Effects of pressure gradient on stability and drag reduction of superhydro-phobic surfaces[J]. Applied Physics Letters, 2019, 114(10): 101603. doi: 10.1063/1.5085081
|
[4] |
PARK S R, WALLACE J M. Flow alteration and drag reduction by riblets in a turbulent boundary layer[J]. AIAA Journal, 1994, 32(1): 31–38. doi: 10.2514/3.11947
|
[5] |
TANG Y P, CLARK D G. On near-wall turbulence-generating events in a turbulent boundary layer on a riblet surface[J]. Applied Scientific Research, 1993, 50(3-4): 215–232. doi: 10.1007/BF00850558
|
[6] |
冯家兴, 胡海豹, 卢丙举, 等. 超疏水沟槽表面通气减阻实验研究[J]. 力学学报, 2020, 52(1): 24–30. DOI: 10.6052/0459-1879-19-279
FENG J X, HU H B, LU B J, et al. Experimental study on drag reduction characteristics of superhydrophobic groove surfaces with ventilation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 24–30. doi: 10.6052/0459-1879-19-279
|
[7] |
KWON B H, KIM H H, JEON H J, et al. Experimental study on the reduction of skin frictional drag in pipe flow by using convex air bubbles[J]. Experiments in Fluids, 2014, 55(4): 1–11. doi: 10.1007/s00348-014-1722-8
|
[8] |
ELBING B R, WINKEL E S, LAY K A, et al. Bubble-induced skin-friction drag reduction and the abrupt transition to air-layer drag reduction[J]. Journal of Fluid Mechanics, 2008, 612: 201–236. doi: 10.1017/s0022112008003029
|
[9] |
宋武超, 王聪, 魏英杰, 等. 水下航行体微气泡减阻特性试验研究[J]. 振动与冲击, 2019, 38(5): 203–208,228. DOI: 10.13465/j.cnki.jvs.2019.05.029
SONG W C, WANG C, WEI Y J, et al. Tests for microbubble drag reduction features of an underwater vehicle[J]. Journal of Vibration and Shock, 2019, 38(5): 203–208,228. doi: 10.13465/j.cnki.jvs.2019.05.029
|
[10] |
TOMS B A. Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers: The 1st International Congress on Rheology[C]//Proc of the 1st International Congress on Rheology. 1948.
|
[11] |
BROSTOW W. Drag reduction and mechanical degradation in polymer solutions in flow[J]. Polymer, 1983, 24(5): 631–638. doi: 10.1016/0032-3861(83)90119-2
|
[12] |
ELBING B R, PERLIN M, DOWLING D R, et al. Modification of the mean near-wall velocity profile of a high-Reynolds number turbulent boundary layer with the injection of drag-reducing polymer solutions[J]. Physics of Fluids, 2013, 25(8): 085103. doi: 10.1063/1.4817073
|
[13] |
任刘珍, 张庆辉, 陈少强, 等. 管道内均匀与非均匀PEO溶液湍流减阻特性研究[J]. 实验力学, 2019, 34(2): 217–223. DOI: 10.750/1001-1888-17-188
REN L Z, ZHANG Q H, CHEN S Q, et al. Study of the turbulent flow drag reduction characteristics of homoge-neous and inhomogeneous PEO solution in pipeline flow[J]. Journal of Experimental Mechanics, 2019, 34(2): 217–223. doi: 10.750/1001-1888-17-188
|
[14] |
王青会, 刘冬洁, 魏进家. 阳离子型表面活性剂与非离子型聚合物相互作用减阻研究[J]. 西安交通大学学报, 2018, 52(1): 26–32. DOI: 10.7652/xjtuxb201801005
WANG Q H, LIU D J, WEI J J. Investigation on the drag reduction by interaction of cationic surfactant with nonionic polymer[J]. Journal of Xi'an Jiaotong University, 2018, 52(1): 26–32. doi: 10.7652/xjtuxb201801005
|
[15] |
MAHMOOD W K, KHADUM W A, EMAN E, et al. Biopolymer-surfactant complexes as flow enhancers: charac-terization and performance evaluation[J]. Applied Rheology, 2019, 29(1): 12–20. doi: 10.1515/arh-2019-0002
|
[16] |
PANG M J, XIE C C, ZHANG Z, et al. Experimental studies on drag reduction by coupled addition of nonionic polymer poly(ethylene oxide) and cationic surfactant cetyl-trimethyl ammonium chloride[J]. Asia-Pacific Journal of Chemical Engineering, 2018, 13(4): e2218. doi: 10.1002/apj.2218
|
[17] |
WINKEL E S, OWEIS G F, VANAPALLI S A, et al. High-Reynolds-number turbulent boundary layer friction drag reduction from wall-injected polymer solutions[J]. Journal of Fluid Mechanics, 2009, 621: 259–288. doi: 10.1017/s0022112008004874
|
[18] |
MOTOZAWA M, KUROSAWA T, XU H N, et al. Experimental study on turbulent drag reduction and polymer mass fraction distribution with blowing polymer solution from the channel wall[C]//Proceedings of 2010 14th International Heat Transfer Conference. 2011: 797-805. doi: 10.1115/IHTC14-23199
|
[19] |
SOARES E J. Review of mechanical degradation and de-aggregation of drag reducing polymers in turbulent flows[J]. Journal of Non-Newtonian Fluid Mechanics, 2020, 276: 104225. doi: 10.1016/j.jnnfm.2019.104225
|
[20] |
ABDUL BARI H A, KAMARULIZAM S N, MAN R C. Investigating drag reduction characteristic using okra mucilage as new drag reduction agent[J]. Journal of Applied Sciences, 2011, 11(14): 2554–2561. doi: 10.3923/jas.2011.2554.2561
|
[21] |
ABDUL BARI H A, LETCHMANAN K, YUNUS R M. Drag reduction characteristics using aloe vera natural mucilage: an experimental study[J]. Journal of Applied Sciences, 2011, 11(6): 1039–1043. doi: 10.3923/jas.2011.1039.1043
|
[22] |
COELHO E C, BARBOSA K C O, SOARES E J, et al. Okra as a drag reducer for high Reynolds numbers water flows[J]. Rheologica Acta, 2016, 55(11-12): 983–991. doi: 10.1007/s00397-016-0974-z
|
[23] |
SOARES E J, SIQUEIRA R N, LEAL L M, et al. The role played by the aging of aloe vera on its drag reduction properties in turbulent flows[J]. Journal of Non-Newtonian Fluid Mechanics, 2019, 265: 1–10. doi: 10.1016/j.jnnfm.2018.12.010
|
[24] |
RAJAPPAN A, MCKINLEY G H. Epidermal biopolysac-charides from plant seeds enable biodegradable turbulent drag reduction[J]. Scientific Reports, 2019, 9: 18263. doi: 10.1038/s41598-019-54521-3
|
[25] |
KIM C A, LIM S T, CHOI H J, et al. Characterization of drag reducing guar gum in a rotating disk flow[J]. Journal of Applied Polymer Science, 2002, 83(13): 2938–2944. doi: 10.1002/app.10300
|
[26] |
CAMPOLO M, SIMEONI M, LAPASIN R, et al. Turbulent drag reduction by biopolymers in large scale pipes[J]. Journal of Fluids Engineering, 2015, 137(4): 041102. doi: 10.1115/1.4028799
|
[27] |
禹燕飞, 李明义, 赵文斌, 等. 藻类多糖高聚物减阻特性的试验研究[C]//中国力学大会——2013论文摘要集. 2013: 259.
|
[28] |
李昌烽, 禹燕飞, 赵文斌, 等. 黄原胶水溶液管道流动减阻特性的试验[J]. 江苏大学学报: 自然科学版, 2015, 36(1): 30–35. DOI: 10.3969/j.issn.1671-7775.2015.01.006
LI C F, YU Y F, ZHAO W B, et al. Experiment on drag reduction characteristics of xanthan gum solution in pipe flow[J]. Journal of Jiangsu University: Natural Science Edition, 2015, 36(1): 30–35. doi: 10.3969/j.issn.1671-7775.2015.01.006
|
[29] |
朱波, 赵文斌, 李明义, 等. 黄原胶盐溶液减阻及抗剪切特性的实验研究[J]. 实验流体力学, 2018, 32(5): 61–66. DOI: 10.11729/syltlx20180035
ZHU B, ZHAO W B, LI M Y, et al. Experimental study on drag reduction and anti-shearing characteristics of xanthan gum solution with NaCl[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(5): 61–66. doi: 10.11729/syltlx20180035
|
[30] |
WU J, TULIN M P. Drag reduction by ejecting additive solutions into pure-water boundary layer[J]. Journal of Basic Engineering, 1972, 94(4): 749–754. doi: 10.1115/1.3425541
|