Citation: | Xu Kejing, Chang Juntao, Li Nan, Bao Wen, Yu Daren. Recent research progress on motion characteristics and flow mechanism of shock train in an isolator with background waves[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 31-42. DOI: 10.11729/syltlx20180196 |
[1] |
Curran E T, Heiser W H, Pratt D T. Fluid phenomena in scramjet combustion systems[J]. Annual review of Fluid Mechanics, 1996, 28(1):323-360 DOI: 10.1146/annurev.fl.28.010196.001543
|
[2] |
Waltrup P J, Billig F S. Structure of shock waves in cylindrical ducts[J]. AIAA Journal, 1973, 11(10):1404-1408. DOI: 10.2514/3.50600
|
[3] |
Billig F S. Research on supersonic combustion[J]. Journal of Propulsion and Power, 1993, 9(4):499-514. DOI: 10.2514/3.23652
|
[4] |
张堃元, 王成鹏, 杨建军, 等.带高超进气道的隔离段流动特性[J].推进技术, 2002, 23(4):311-314. DOI: 10.3321/j.issn:1001-4055.2002.04.012
Zhang K Y, Wang C P, Yang J J, et al. Investigation of flow in isolator of hypersonic inlet[J]. Journal of Propulsion Technology, 2002, 23(4):311-314. DOI: 10.3321/j.issn:1001-4055.2002.04.012
|
[5] |
Wang C P, Zhang K Y, Yang J J. Analysis of flows in scramjet isolator combined with hypersonic inlet[R]. AIAA-2005-24, 2005.
|
[6] |
Wagner J L, Yuceil K B, Valdivia A, et al. Experimental investigation of unstart in an inlet/isolator or model in Mach 5 flow[J]. AIAA Journal, 2009, 47(6):1528-1542. DOI: 10.2514/1.40966
|
[7] |
Wagner J L, Yuceil K B, Clemens N T. Velocimetry measurements of unstart of an inlet-isolator model in Mach 5 flow[J]. AIAA Journal, 2010, 48(9):1875-1888. DOI: 10.2514/1.J050037
|
[8] |
张航, 谭慧俊, 孙姝.进口斜激波、膨胀波干扰下等直隔离段内的激波串特性[J].航空学报, 2010, 31(9):1733-1739. http://d.old.wanfangdata.com.cn/Periodical/hkxb201009005
Zhang H, Tan H J, Sun S. Characteristics of shock train in a straight isolator with interference of incident shock waves and corner expansion waves[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(9):1733-1739. http://d.old.wanfangdata.com.cn/Periodical/hkxb201009005
|
[9] |
田旭昂, 王成鹏, 程克明. Ma5斜激波串动态特性试验研究[J].推进技术, 2014, 35(8):1030-1039.
Tian X A, Wang C P, Cheng K M. Experimental investigation of dynamic characteristics of oblique shock train in mach 5 flow[J]. Journal of Propulsion Technology, 2014, 35(8):1030-1039.
|
[10] |
Tan H J, Sun S, Huang H X. Behavior of shock trains in a hypersonic inlet/isolator model with complex background waves[J]. Experiments in Fluids, 2012, 53(6):1647-1661. DOI: 10.1007/s00348-012-1386-1
|
[11] |
Huang H X, Sun S, Tan H J, et al. Characterization of two typical unthrottled flows in hypersonic inlet/isolator models[J]. Journal of Aircraft, 2015, 52(5):1715-1721. DOI: 10.2514/1.C033190
|
[12] |
Koo H, Raman V. Large-eddy simulation of a supersonic inlet-isolator[J]. AIAA Journal, 2012, 50(7):1596-1613. DOI: 10.2514/1.J051568
|
[13] |
Xu K J, Chang J T, Zhou W X, et al. Mechanism and prediction for occurrence of shock-train sharp forward movement[J]. AIAA Journal, 2016, 54(1):1403-1412. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=260709d7c2fe50b58d7bdb3ff4625e54
|
[14] |
Li N, Chang J T, Yu D R, et al. Mathematical model of shock-train path with complex background waves[J]. Journal of Propulsion and Power, 2017, 33(2):468-478. DOI: 10.2514/1.B36234
|
[15] |
Xu K J, Chang J T, Zhou W X, et al. Mechanism of shock train rapid motion induced by variation of attack angle[J]. Acta Astronautica, 2017, 140:18-26. DOI: 10.1016/j.actaastro.2017.08.009
|
[16] |
Dessornes O, Scherrer D, Novelli P. Tests of japhar dual mode ramjet engine[R]. AIAA-2001-1886, 2001.
|
[17] |
Denis S R, Kau H P, Brandstetter A. Experimental study on transition between ramjet and scramjet modes in a dual-mode combustor[R]. AIAA 2003-7048, 2003.
|
[18] |
Chun J, Scheurermann T, von Wolfersdorf J, et al. Experimental study on combustion mode transition in a scramjet with parallel injection[R]. AIAA-2006-8063, 2006.
|
[19] |
Le D B, Goyne C P, Krauss R H, et al. Experimental study of a dual-mode scramjet isolator[J]. Journal of Propulsion and Power, 2008, 24(5):1050-1057. DOI: 10.2514/1.32591
|
[20] |
Yu D R, Cui T, Bao W. Catastrophe, hysteresis and bifurcation of mode transition in scramjet engines and its model[J]. Science in China Series E:Technological Sciences, 2009, 52(6):1543-1550. DOI: 10.1007/s11431-009-0181-6
|
[21] |
Kobayashi K, Tomioka S, Kato K, Performance of a dual-mode combustor with multistaged fuel injection[J]. Journal of Propulsion and Power, 2006, 22(3):518-526. DOI: 10.2514/1.19294
|
[22] |
Qin B, Chang J T, Jiao X L, et al. Unstart margin characterization method of scramjet considering isolator-combustor interactions[J]. AIAA Journal, 2015, 53(2):493-500. DOI: 10.2514/1.J053547
|
[23] |
Gnani F, Zare-Behtash H, Kontis K. Pseudo-shock waves and their interactions in high-speed intakes[J]. Progress in Aerospace Science, 2016, 82:36-56. DOI: 10.1016/j.paerosci.2016.02.001
|
[24] |
Tu Q Y, Segal C. Isolator/combustion chamber interactions during supersonic combustion[J]. Journal of Propulsion and Power, 2010, 26(1):182-186. DOI: 10.2514/1.46156
|
[25] |
Xu K J, Chang J T, Li N, et al. Preliminary investigation of limits of shock train jumps in a hypersonic inlet-isolator[J]. European Journal of Mechanics-B/Fluids, 2018, 72:664-675. DOI: 10.1016/j.euromechflu.2018.07.015
|
[26] |
VeillardX, Tahir R, Timofeev E, et al. Limiting contractions for starting simple ramp-type scramjet intakes with overboard spillage[J]. Journal of Propulsion and Power, 2008, 24(5):1042-1049. DOI: 10.2514/1.34547
|
[27] |
Xu K J, Chang J T, Li N, et al. Experimental investigation of mechanism and limits for shock train rapid forward movement[J]. Experimental Thermal and Fluid Science, 2019, 98:336-345. https://www.sciencedirect.com/science/article/pii/S0894177718303959
|
[28] |
Huang H X, Tan H J, Sun S, et al. Evolution of supersonic corner vortex in a hypersonic inlet/isolator model[J]. Physics of Fluids, 2016, 28(12):126101. DOI: 10.1063/1.4971448
|
[29] |
Funderburk M, Narayanaswamy V. Experimental investigation of primary and corner shock boundary layer interactions at mild back pressure ratios[J]. Physics of Fluids, 2016, 28(8):086102. DOI: 10.1063/1.4960963
|
[30] |
Pirozzoli S, Grasso F. Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at Ma=2.25[J]. Physics of Fluids, 2006, 18(6):065113. DOI: 10.1063/1.2216989
|
[31] |
Bermejo-Moreno I, Campo L, Larsson J, et al. Confinement effects in shock wave/turbulent boundary layer interactions through wall-modelled large-eddy simulations[J]. Journal of Fluid Mechanics, 2014, 758:5-62. DOI: 10.1017/jfm.2014.505
|
[32] |
Chakravarthy R V K, Nair V, Muruganandam T M, et al. Analytical and numerical study of normal shock response in a uniform duct[J]. Physics of Fluids, 2018, 30(8):086101. DOI: 10.1063/1.5027903
|
[33] |
Bruce P J K, Babinsky H. Unsteady shock wave dynamics[J]. Journal of Fluid Mechcanics, 2008, 603:463-473. DOI: 10.1017/S0022112008001195
|
[34] |
Cui T, Wang Y, Yu D R. Bistability and hysteresis in a nonlinear dynamic model of shock motion[J]. Journal of Aircraft, 2014, 51(5):1373-1379. DOI: 10.2514/1.C032175
|
[35] |
Su W Y, Zhang K Y. Back-pressure effects on the hypersonic inlet-isolator pseudoshock motion[J]. Journal of Propulsion and Power, 2013, 29(6):1391-1399. DOI: 10.2514/1.B34803
|
[36] |
Li N, Chang J T, Xu K J, Yu D R, et al. Oscillation of the shock train in an isolator with incident shocks[J]. Physics of Fluids, 2018, 30(11):116102. DOI: 10.1063/1.5053451
|
[37] |
Li N, Chang J T, Xu K J, et al. Prediction dynamic model of shock train with complex background waves[J]. Physics of Fluids, 2017, 29(11):116103. DOI: 10.1063/1.5000876
|