Xu Hua, Xia Yunfeng, Cai Zhewei, Hao Siyu, Zhang Shizhao. Application of thermal shear stress gauge in study on wave-current dynamics[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(3): 78-81, 93. DOI: 10.11729/syltlx20170034
Citation: Xu Hua, Xia Yunfeng, Cai Zhewei, Hao Siyu, Zhang Shizhao. Application of thermal shear stress gauge in study on wave-current dynamics[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(3): 78-81, 93. DOI: 10.11729/syltlx20170034

Application of thermal shear stress gauge in study on wave-current dynamics

More Information
  • Received Date: March 01, 2017
  • Revised Date: May 21, 2017
  • The movement of sediment at estuary and coast is directly restricted by the bed shear stress. Therefore, the basic research on the influence of the bed shear stress on the sediment movement is important. However, there is no available method for measuring and computing the bed shear stress under a complicated dynamic condition like the wave current. This paper conducts the measurement and test research on the bed shear stress in a long launder of direct current by the new thermal shearometer based on micro-nanotechnology. As the research results show, the thermal shearometer has high response frequency and strong stability. The measuring result reflects the basic law of the bed shear stress with the wave and wave-current effect, and confirms that the method of measuring bed shear stress under wave-current condition with the thermal shearometer is feasible. Meanwhile, a preliminary method to compute the shear stress compounded by wave-current is put forward. It benefits further research on the basic theory of the sediment movement with complicated dynamic effects.
  • [1]
    Sleath J F A. Transition in oscillatory flow over rough beds[J]. Journal of Waterway, Port, Coastal Ocean Engineering, 1988, 114: 18-33. DOI: 10.1061/(ASCE)0733-950X(1988)114:1(18)
    [2]
    秦崇仁, 仇学艳, 李德筠, 等.随机波浪作用下底部层流边界层切应力谱的研究[J].水利学报, 1999, 12: 48-52. DOI: 10.3321/j.issn:0559-9350.1999.12.009

    Qin C R, Qiu X Y, Li D J, et al. A study of bottom shear stress of laminar boundary layer in random waves[J]. Journal of Hydraulic Engineering, 1999, 12: 48-52. DOI: 10.3321/j.issn:0559-9350.1999.12.009
    [3]
    Hamid M, Ian R Y. Direct measurements of the bottom friction factor beneath surface gravity waves[J]. Applied Ocean Research, 2003, 25: 269-287. DOI: 10.1016/j.apor.2004.02.002
    [4]
    霍光. 波流边界层底沙运动研究[D]. 南京: 河海大学, 2007: 1-51.

    Huo G. A study of sediment movement on wave flow boundary layer[D]. Nanjing: Hohai University, 2007: 1-51.
    [5]
    Haritonidis J H. The measurement of wall shear-stress[J]. Advances in Fluid Mechanics, 1989: 229-261. http://www.oalib.com/paper/2841369
    [6]
    Jonathan W N, Mark S. Modern developments in shear stress measurement[J]. Progress in Aerospace Sciences, 2002, 38: 515-570. DOI: 10.1016/S0376-0421(02)00031-3
    [7]
    Xu Y X, Lin Q, Lin G Y, et al. Micromachined thermal shear-stress sensor for underwater applications[J]. Journal of Microelectromechanical Systems, 2005, 14(5): 1023-1030. DOI: 10.1109/JMEMS.2005.856644
    [8]
    梁婷, 夏云峰, 徐华, 等.波浪作用下床面切应力测量初探[J].水道港口, 2010, 31(5): 425-428. http://www.cnki.com.cn/Article/CJFDTOTAL-SDGK201005036.htm

    Liang T, Xia Y F, Xu H, et al. A primary study of bed shear stress wave measurement in waves and flows[J]. Journal of Waterway and Harbor, 2010, 31(5): 425-428. http://www.cnki.com.cn/Article/CJFDTOTAL-SDGK201005036.htm
    [9]
    Xu Y. Flexible MEMS skin technology for distributed fluidic sensing[D]. USA: California Institute of Technology Pasadena, 2002: 1-136.
    [10]
    Schetz J A, Fuhs A E. Handbook of fluid dynamics and fluid machinery[M]. Vol Ⅰ: John Wiley & Sons Inc, 1996: 1921-1989.
    [11]
    马炳和, 王毅, 姜澄宇, 等.柔性热膜剪应力传感器水下测量温度修正[J].实验流体力学, 2014, 28(2): 39-44. DOI: 10.11729/syltlx20140006

    Ma B H, Wang Y, Jiang C Y, et al. Temperature correction of flexible thermal shear stress sensor for underwater measurements[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(2): 39-44. DOI: 10.11729/syltlx20140006
    [12]
    [13]
    Swart D H, Fleming C A. Long shore water and sediment movement[C]. Proceedings of the 17th Conference on Coastal Engineering Conference, 1980, 2: 93-109. https://www.researchgate.net/publication/248574769_Holocene_geoarchaeology_of_the_Sixteen_Mile_Beach_barrier_dunes_in_the_Western_Cape_South_Africa
  • Related Articles

    [1]ZHANG Xuhui, WANG Zhaowei, YAO Ran. The aerodynamic heating consistency study between CFD and experiment for air-breathing integrated vehicle[J]. Journal of Experiments in Fluid Mechanics, 2025, 39(1): 45-53. DOI: 10.11729/syltlx20220041
    [2]CHEN Zhenhua, LIU Zongzheng, CHEN Jiming, GUO Shouchun, YAN Xiqiang, PEI Haitao. Characteristics and key technology analysis of large continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(1): 62-68. DOI: 10.11729/syltlx20210092
    [3]LONG Bingxiang, LIU Zongzheng, CHEN Zhenhua, CHEN Jiming, LEI Pengfei. Aerodynamic and aero-acoustic design of continuous transonic wind tunnel compressor[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(1): 27-36. DOI: 10.11729/syltlx20210079
    [4]Zheng Xiaogang, Li Zhonglong, Li Yiqing, Zhang Xu, Zhu Chengxiang, You Yancheng. Integrated design and experimental research for curved fore-body and 3D inward turning inlet[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(5): 28-35, 48. DOI: 10.11729/syltlx20190019
    [5]Qiao Wenyou, Yu Anyuan. Overview on integrated design of inward-turning inlet with aircraft forebody[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 43-59. DOI: 10.11729/syltlx20190028
    [6]Ding Feng, Liu Jun, Shen Chibing, Liu Zhen, Chen Shaohua, Huang Wei. An overview of waverider design concept in airframe-inlet integration methodology for air-breathing hypersonic vehicles[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 16-26. DOI: 10.11729/syltlx20180080
    [7]Deng Fan, Ye Youda, Jiao Zihan, Liu Hui. Research on HIFiRE project's hypersonic vehicle integrated design of aerodynamic and scramjet propulsion[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 73-80. DOI: 10.11729/syltlx20160125
    [8]HE Wei, YU Shi-en, LI Hong-Bing. Experimental investigation on thrust-drag performance of hypersonic integrative vehicle[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(2): 65-68. DOI: 10.3969/j.issn.1672-9897.2010.02.014
    [9]CHE Jing, TANG Shuo. Research of airframe/scramjet integrated design of hypersonic vehicle[J]. Journal of Experiments in Fluid Mechanics, 2006, 20(2): 41-44,49. DOI: 10.3969/j.issn.1672-9897.2006.02.008
    [10]Integrative design of supersonic inlet and missile body[J]. Journal of Experiments in Fluid Mechanics, 2004, 18(4): 28-33. DOI: 10.3969/j.issn.1672-9897.2004.04.007
  • Cited by

    Periodical cited type(5)

    1. 时文,田野,郭明明,刘源,张辰琳,钟富宇,乐嘉陵. 乙烯燃料超燃燃烧室流动特性与燃烧稳定性研究. 力学学报. 2022(03): 612-621 .
    2. 钟富宇,冉伟,田野,于欣,彭江波,乐嘉陵. 超燃冲压发动机自点火条件下波系演化规律试验研究. 推进技术. 2022(12): 191-199 .
    3. 钟富宇,乐嘉陵,田野,岳茂雄. 乙烯燃料超燃冲压发动机燃烧过程研究. 实验流体力学. 2021(01): 34-43 . 本站查看
    4. 李素芬,林姿含,东明. 凹腔结构对氢气超声速燃烧影响数值模拟. 热科学与技术. 2021(04): 395-402 .
    5. 刘冰,何国强,秦飞. 乙烯高速射流点火过程试验研究. 实验流体力学. 2018(02): 24-27 . 本站查看

    Other cited types(1)

Catalog

    Article Metrics

    Article views (172) PDF downloads (8) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close