Citation: | Xu Hua, Xia Yunfeng, Cai Zhewei, Hao Siyu, Zhang Shizhao. Application of thermal shear stress gauge in study on wave-current dynamics[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(3): 78-81, 93. DOI: 10.11729/syltlx20170034 |
[1] |
Sleath J F A. Transition in oscillatory flow over rough beds[J]. Journal of Waterway, Port, Coastal Ocean Engineering, 1988, 114: 18-33. DOI: 10.1061/(ASCE)0733-950X(1988)114:1(18)
|
[2] |
秦崇仁, 仇学艳, 李德筠, 等.随机波浪作用下底部层流边界层切应力谱的研究[J].水利学报, 1999, 12: 48-52. DOI: 10.3321/j.issn:0559-9350.1999.12.009
Qin C R, Qiu X Y, Li D J, et al. A study of bottom shear stress of laminar boundary layer in random waves[J]. Journal of Hydraulic Engineering, 1999, 12: 48-52. DOI: 10.3321/j.issn:0559-9350.1999.12.009
|
[3] |
Hamid M, Ian R Y. Direct measurements of the bottom friction factor beneath surface gravity waves[J]. Applied Ocean Research, 2003, 25: 269-287. DOI: 10.1016/j.apor.2004.02.002
|
[4] |
霍光. 波流边界层底沙运动研究[D]. 南京: 河海大学, 2007: 1-51.
Huo G. A study of sediment movement on wave flow boundary layer[D]. Nanjing: Hohai University, 2007: 1-51.
|
[5] |
Haritonidis J H. The measurement of wall shear-stress[J]. Advances in Fluid Mechanics, 1989: 229-261. http://www.oalib.com/paper/2841369
|
[6] |
Jonathan W N, Mark S. Modern developments in shear stress measurement[J]. Progress in Aerospace Sciences, 2002, 38: 515-570. DOI: 10.1016/S0376-0421(02)00031-3
|
[7] |
Xu Y X, Lin Q, Lin G Y, et al. Micromachined thermal shear-stress sensor for underwater applications[J]. Journal of Microelectromechanical Systems, 2005, 14(5): 1023-1030. DOI: 10.1109/JMEMS.2005.856644
|
[8] |
梁婷, 夏云峰, 徐华, 等.波浪作用下床面切应力测量初探[J].水道港口, 2010, 31(5): 425-428. http://www.cnki.com.cn/Article/CJFDTOTAL-SDGK201005036.htm
Liang T, Xia Y F, Xu H, et al. A primary study of bed shear stress wave measurement in waves and flows[J]. Journal of Waterway and Harbor, 2010, 31(5): 425-428. http://www.cnki.com.cn/Article/CJFDTOTAL-SDGK201005036.htm
|
[9] |
Xu Y. Flexible MEMS skin technology for distributed fluidic sensing[D]. USA: California Institute of Technology Pasadena, 2002: 1-136.
|
[10] |
Schetz J A, Fuhs A E. Handbook of fluid dynamics and fluid machinery[M]. Vol Ⅰ: John Wiley & Sons Inc, 1996: 1921-1989.
|
[11] |
马炳和, 王毅, 姜澄宇, 等.柔性热膜剪应力传感器水下测量温度修正[J].实验流体力学, 2014, 28(2): 39-44. DOI: 10.11729/syltlx20140006
Ma B H, Wang Y, Jiang C Y, et al. Temperature correction of flexible thermal shear stress sensor for underwater measurements[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(2): 39-44. DOI: 10.11729/syltlx20140006
|
[12] |
Bijker E W. Some considerations about scales models with moveable beds[J]. Delft Hydraulics Lab Publ, 1967, 50: 1-142. https://www.researchgate.net/profile/Peter_Nielsen4/publication/49115472_Vertical_scales_and_shear_stresses_in_wave_boundary_layers_over_movable_beds/links/00b49523b748a95a8e000000.pdf
|
[13] |
Swart D H, Fleming C A. Long shore water and sediment movement[C]. Proceedings of the 17th Conference on Coastal Engineering Conference, 1980, 2: 93-109. https://www.researchgate.net/publication/248574769_Holocene_geoarchaeology_of_the_Sixteen_Mile_Beach_barrier_dunes_in_the_Western_Cape_South_Africa
|
[1] | ZHANG Xuhui, WANG Zhaowei, YAO Ran. The aerodynamic heating consistency study between CFD and experiment for air-breathing integrated vehicle[J]. Journal of Experiments in Fluid Mechanics, 2025, 39(1): 45-53. DOI: 10.11729/syltlx20220041 |
[2] | CHEN Zhenhua, LIU Zongzheng, CHEN Jiming, GUO Shouchun, YAN Xiqiang, PEI Haitao. Characteristics and key technology analysis of large continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(1): 62-68. DOI: 10.11729/syltlx20210092 |
[3] | LONG Bingxiang, LIU Zongzheng, CHEN Zhenhua, CHEN Jiming, LEI Pengfei. Aerodynamic and aero-acoustic design of continuous transonic wind tunnel compressor[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(1): 27-36. DOI: 10.11729/syltlx20210079 |
[4] | Zheng Xiaogang, Li Zhonglong, Li Yiqing, Zhang Xu, Zhu Chengxiang, You Yancheng. Integrated design and experimental research for curved fore-body and 3D inward turning inlet[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(5): 28-35, 48. DOI: 10.11729/syltlx20190019 |
[5] | Qiao Wenyou, Yu Anyuan. Overview on integrated design of inward-turning inlet with aircraft forebody[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 43-59. DOI: 10.11729/syltlx20190028 |
[6] | Ding Feng, Liu Jun, Shen Chibing, Liu Zhen, Chen Shaohua, Huang Wei. An overview of waverider design concept in airframe-inlet integration methodology for air-breathing hypersonic vehicles[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 16-26. DOI: 10.11729/syltlx20180080 |
[7] | Deng Fan, Ye Youda, Jiao Zihan, Liu Hui. Research on HIFiRE project's hypersonic vehicle integrated design of aerodynamic and scramjet propulsion[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 73-80. DOI: 10.11729/syltlx20160125 |
[8] | HE Wei, YU Shi-en, LI Hong-Bing. Experimental investigation on thrust-drag performance of hypersonic integrative vehicle[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(2): 65-68. DOI: 10.3969/j.issn.1672-9897.2010.02.014 |
[9] | CHE Jing, TANG Shuo. Research of airframe/scramjet integrated design of hypersonic vehicle[J]. Journal of Experiments in Fluid Mechanics, 2006, 20(2): 41-44,49. DOI: 10.3969/j.issn.1672-9897.2006.02.008 |
[10] | Integrative design of supersonic inlet and missile body[J]. Journal of Experiments in Fluid Mechanics, 2004, 18(4): 28-33. DOI: 10.3969/j.issn.1672-9897.2004.04.007 |
1. |
时文,田野,郭明明,刘源,张辰琳,钟富宇,乐嘉陵. 乙烯燃料超燃燃烧室流动特性与燃烧稳定性研究. 力学学报. 2022(03): 612-621 .
![]() | |
2. |
钟富宇,冉伟,田野,于欣,彭江波,乐嘉陵. 超燃冲压发动机自点火条件下波系演化规律试验研究. 推进技术. 2022(12): 191-199 .
![]() | |
3. |
钟富宇,乐嘉陵,田野,岳茂雄. 乙烯燃料超燃冲压发动机燃烧过程研究. 实验流体力学. 2021(01): 34-43 .
![]() | |
4. |
李素芬,林姿含,东明. 凹腔结构对氢气超声速燃烧影响数值模拟. 热科学与技术. 2021(04): 395-402 .
![]() | |
5. |
刘冰,何国强,秦飞. 乙烯高速射流点火过程试验研究. 实验流体力学. 2018(02): 24-27 .
![]() |