Zheng Xiaogang, Li Zhonglong, Li Yiqing, Zhang Xu, Zhu Chengxiang, You Yancheng. Integrated design and experimental research for curved fore-body and 3D inward turning inlet[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(5): 28-35, 48. DOI: 10.11729/syltlx20190019
Citation: Zheng Xiaogang, Li Zhonglong, Li Yiqing, Zhang Xu, Zhu Chengxiang, You Yancheng. Integrated design and experimental research for curved fore-body and 3D inward turning inlet[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(5): 28-35, 48. DOI: 10.11729/syltlx20190019

Integrated design and experimental research for curved fore-body and 3D inward turning inlet

More Information
  • Received Date: January 20, 2019
  • Revised Date: June 25, 2019
  • An integrated design method for the curved fore-body and the 3D inward-turning inlet is proposed firstly. For the effect of the side-wall expansion angle, two models with different expansion angles are designed and constructed. Wind tunnel tests for them were carried out under the design condition Ma=6.0 and α=0°. The numerical and experimental results show that the new developed integration method is reasonable. The initial conical shock wave induced by the curved fore-body is able to match the cowl lip perfectly so that the spill flow from the cowl lip can be reduced effectively. The mass flow capture capacity of the integrated model can be improved by increasing of the expansion angle in the present work. However, the growth of the expansion angle can possibly depress the back-pressure characteristic of the integrated configuration. Therefore, a proper expansion angle should be selected to meet the overall requirement for the integrated model.
  • [1]
    Kuranov A, Korabelnikov A. Atmospheric cruise flight challenges for hypersonic vehicles under theajax concept[J]. Journal of Propulsion and Power, 2008, 24(6):1229-1247. DOI: 10.2514/1.24684
    [2]
    Kanda T. Study of an airframe-integrated scramjet engine system[R]. AIAA 2000-3705, 2000.
    [3]
    尤延铖, 梁德旺, 郭荣伟, 等.高超声速三维内收缩式进气道/乘波前体一体化设计研究评述[J].力学发展, 2009, 39(5):513-525. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxjz200905001

    You Y C, Liang D W, Guo R W, et al. Overview of the integration of three-dimensional inward turning hypersonic inlet and waverider forebody[J]. Advances in Mechanics, 2009, 39(5):513-525. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxjz200905001
    [4]
    Heiser W H, Pratt D T. Hypersonic airbreathing propulsion[M]. Washington D C:American Institute of Aeronautics and Astronautics Inc, 1994.
    [5]
    Nonweiler T R F. Aerodynamic problems of manned space vehicles[J]. The Aeronautical Journal, 1959, 63(585):521-528.
    [6]
    Falempin F, Serre L. The French LEA flight test program-status in 2008[R]. AIAA-2008-2541, 2008.
    [7]
    Lewis M J. A hypersonic propulsion airframe integration overview[R]. AIAA-2003-4405, 2003.
    [8]
    Ferguson F, Zhang S Y, Apdin H. A design concept for the construction of a complete hypersonic vehicle from 2D flowfields[R]. AIAA-2005-3363, 2005.
    [9]
    Sobieczky H, Dougherty F C, Jones K. Hypersonic waverider design from given shock waves[C]//Proc of the 1st International Hypersonic Waverider Symposium. 1990.
    [10]
    Takashima N, Lewis M J, Lockwood M K, et al. Waverider configuration development for the dual fuel vehicle[R]. AIAA-1996-4593, 1996.
    [11]
    You Y C, Zhu C X, Guo J L. Dual waverider concept for the integration of hypersonic inward-turning inlet and airframe forebody[R]. AIAA-2009-7421, 2009.
    [12]
    Li Y Q, An P, Pan C J, et al. Integration methodology for waverider-derived hypersonic inlet and vehicle forebody[R]. AIAA-2014-3229, 2014.
    [13]
    贺旭照, 周正, 倪鸿礼.密切内锥乘波前体进气道一体化设计和性能分析[J].推进计算, 2012, 33(4):510-515. http://d.old.wanfangdata.com.cn/Periodical/tjjs201204003

    He X Z, Zhou Z, Ni H L. Integrated design methods and performance analyses of osculating inward turning cone waverider forebody inlet (OICWI)[J]. Journal of Propulsion Technology, 2012, 33(4):510-515. http://d.old.wanfangdata.com.cn/Periodical/tjjs201204003
    [14]
    贺旭照, 周正, 毛鹏飞, 等.密切曲面内锥乘波前体进气道设计和试验研究[J].实验流体力学, 2014, 28(3):39-44. http://www.syltlx.com/CN/abstract/abstract10732.shtml

    He X Z, Zhou Z, Mao P F, et al. Design and experimental study of osculating inward turning cone waverider/inlet (OICWI)[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(3):39-44. http://www.syltlx.com/CN/abstract/abstract10732.shtml
    [15]
    范晓樯, 李桦, 易仕和, 等.测压式进气道与飞行器机体气动一体化设计及实验[J].推进技术, 2004, 25(6):499-502. DOI: 10.3321/j.issn:1001-4055.2004.06.005

    Fan X Q, Li H, Yi S H, et al. Experimental of aerodynamic performance for hypersonic vehicle integrated with sidewall compression inlet[J]. Journal of Propulsion Technology, 2004, 25(6):499-502. DOI: 10.3321/j.issn:1001-4055.2004.06.005
    [16]
    Kothari A P, Tarpley C, Mclaughlin T A, et al. Hypersonic vehicle design using inward turning flow fileds[R]. AIAA-1996-2552, 1996.
    [17]
    尤延铖, 梁德旺.基于内乘波概念的三维变截面高超声速进气道[J].中国科学(E辑:技术科学), 2009, 39(8):1483-1494. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-ce200908016

    You Y C, Liang D W. Design concept of three-dimensional section controllable internal waverider hypersonic inlet[J]. Science in China (Series E:Technologica), 2009, 39(8):1483-1494. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-ce200908016
    [18]
    Webster F F, Bucy J A. ASALM-PTV chin inlet technology overview[R]. AIAA-1979-1240, 1979.
    [19]
    Smart M K. Design of three-dimensional hypersonic inlets with rectangular-to-elliptical shape transition[J]. Journal of Propulsion and Power, 1998, 15(3):408-416. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201209014
    [20]
    Gollan R J, Smart M K. Design of modular shape-transition inlets for a conical hypersonic vehicle[J]. Journal of Propulsion and Power, 2013, 29(4):832-838. DOI: 10.2514/1.B34672
    [21]
    李怡庆, 周驯黄, 朱呈祥, 等.曲锥前体/三维内转进气道一体化设计与分析[J].航空动力学报, 2018, 33(1):87-96. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkdlxb201801011

    Li Y Q, Zhou X H, Zhu C X, et al. Integration design and analysis for curved conical forebody and three-dimensional inward turning inlet[J]. Journal of Aerospace Power, 2018, 33(1):87-96. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkdlxb201801011
  • Related Articles

    [1]LI Meng, ZHAO Huiyong, YUAN Qiang, CHEN Li, MU Jinhe. Experimental research on the influence of turbulence intensity on boundary layer transition in Mach 3 supersonic flow[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(6): 56-64. DOI: 10.11729/syltlx20220087
    [2]LIANG Zhi, HU Fei, SHI Yu, ZHANG Zhe, LIU Lei. Research of mast shadow effect on the average wind speed and turbulence intensity by field experiment[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(2): 88-97. DOI: 10.11729/syltlx20220010
    [3]ZHU Bo, CHEN Jiming, WU Wei, PEI Haitao. Experimental investigation of turbulence intensity measurement in continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20220034
    [4]YANG Junwei, YANG Hua, FU Shifeng, ZONG Wangwang, SHA Chenglong. Wind tunnel experimental study of the grille-generated turbulence in the short test section[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(6): 86-93. DOI: 10.11729/syltlx20210042
    [5]HU Shangyu, LI Qiusheng, ZHANG Ming. Active turbulence simulation study of wind loads on standard low-rise building[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 22-29. DOI: 10.11729/syltlx20190157
    [6]Yu Qianqian, Wang Jinhua, Zhang Weijie, Zhang Meng, Huang Zuohua. Development of scale-controlled premixed turbulent burner and the flame structure analysis[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 10-17. DOI: 10.11729/syltlx20170150
    [7]Ma Ziran, Xu Minyi, Luan Jian, Liu Xiaopeng, Zhao Feifei. Statistical properties of turbulent free jets issuing from rectangular nozzles with different aspect ratios[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(1): 54-61. DOI: 10.11729/syltlx20160116
    [8]Zhu Bo, Peng Qiang, Tang Gengsheng. Digital signal process of low turbulence intensity based on EMD[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(5): 74-79. DOI: 10.11729/syltlx20150148
    [9]WU Wen-fei, XIE Jing-xing, GONG Zhi-jun, LI Bao-wei. PIV measurements of the turbulence integral length scale on cold combustion flow field in burner zone of tangential firing boiler[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(2): 38-41,50. DOI: 10.3969/j.issn.1672-9897.2012.02.008
    [10]LIU Gang, WANG Yang, WANG Xue-yan, SHI Jia-tao, WANG Jing. PIV measurements of the ILS on in-cylinder gas turbulent flow field of gasoline engine[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(1): 59-63,67. DOI: 10.3969/j.issn.1672-9897.2007.01.012
  • Cited by

    Periodical cited type(7)

    1. 郭沛洋,张毅,张梦卓,胡海豹. 亲水-超疏水相间表面通气减阻实验研究. 力学学报. 2024(01): 94-100 .
    2. 秦立果,刘建波,李航,卢山,马泽宇,王征,董光能. 水下湍流减阻技术研究进展. 表面技术. 2024(16): 1-18 .
    3. 张春来,张丽霞,王潇,吴银涛,王波. 沟槽型微纳复合结构表面的制备与减阻性能研究. 材料导报. 2023(12): 239-243 .
    4. 张奕,潘翀,窦建宇,张淼. 微型涡流发生器影响下的湍流边界层流场与摩阻特性. 实验流体力学. 2023(04): 48-58 . 本站查看
    5. 李茂林,张浩,玄克勇,石若冉,张志. 壁面微沟槽减阻技术研究进展. 煤气与热力. 2023(10): 12-19 .
    6. 李炳炘,张浩,玄克勇,孙国梁. 微沟槽减阻技术研究现状与进展综述. 煤气与热力. 2023(12): 21-27 .
    7. 罗忠,刘凯,周欣,胡俊波. 水下目标壳体复合涂层阻力试验. 船舶工程. 2022(09): 147-151 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views (201) PDF downloads (8) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close