Citation: | Zheng Xiaogang, Li Zhonglong, Li Yiqing, Zhang Xu, Zhu Chengxiang, You Yancheng. Integrated design and experimental research for curved fore-body and 3D inward turning inlet[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(5): 28-35, 48. DOI: 10.11729/syltlx20190019 |
[1] |
Kuranov A, Korabelnikov A. Atmospheric cruise flight challenges for hypersonic vehicles under theajax concept[J]. Journal of Propulsion and Power, 2008, 24(6):1229-1247. DOI: 10.2514/1.24684
|
[2] |
Kanda T. Study of an airframe-integrated scramjet engine system[R]. AIAA 2000-3705, 2000.
|
[3] |
尤延铖, 梁德旺, 郭荣伟, 等.高超声速三维内收缩式进气道/乘波前体一体化设计研究评述[J].力学发展, 2009, 39(5):513-525. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxjz200905001
You Y C, Liang D W, Guo R W, et al. Overview of the integration of three-dimensional inward turning hypersonic inlet and waverider forebody[J]. Advances in Mechanics, 2009, 39(5):513-525. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxjz200905001
|
[4] |
Heiser W H, Pratt D T. Hypersonic airbreathing propulsion[M]. Washington D C:American Institute of Aeronautics and Astronautics Inc, 1994.
|
[5] |
Nonweiler T R F. Aerodynamic problems of manned space vehicles[J]. The Aeronautical Journal, 1959, 63(585):521-528.
|
[6] |
Falempin F, Serre L. The French LEA flight test program-status in 2008[R]. AIAA-2008-2541, 2008.
|
[7] |
Lewis M J. A hypersonic propulsion airframe integration overview[R]. AIAA-2003-4405, 2003.
|
[8] |
Ferguson F, Zhang S Y, Apdin H. A design concept for the construction of a complete hypersonic vehicle from 2D flowfields[R]. AIAA-2005-3363, 2005.
|
[9] |
Sobieczky H, Dougherty F C, Jones K. Hypersonic waverider design from given shock waves[C]//Proc of the 1st International Hypersonic Waverider Symposium. 1990.
|
[10] |
Takashima N, Lewis M J, Lockwood M K, et al. Waverider configuration development for the dual fuel vehicle[R]. AIAA-1996-4593, 1996.
|
[11] |
You Y C, Zhu C X, Guo J L. Dual waverider concept for the integration of hypersonic inward-turning inlet and airframe forebody[R]. AIAA-2009-7421, 2009.
|
[12] |
Li Y Q, An P, Pan C J, et al. Integration methodology for waverider-derived hypersonic inlet and vehicle forebody[R]. AIAA-2014-3229, 2014.
|
[13] |
贺旭照, 周正, 倪鸿礼.密切内锥乘波前体进气道一体化设计和性能分析[J].推进计算, 2012, 33(4):510-515. http://d.old.wanfangdata.com.cn/Periodical/tjjs201204003
He X Z, Zhou Z, Ni H L. Integrated design methods and performance analyses of osculating inward turning cone waverider forebody inlet (OICWI)[J]. Journal of Propulsion Technology, 2012, 33(4):510-515. http://d.old.wanfangdata.com.cn/Periodical/tjjs201204003
|
[14] |
贺旭照, 周正, 毛鹏飞, 等.密切曲面内锥乘波前体进气道设计和试验研究[J].实验流体力学, 2014, 28(3):39-44. http://www.syltlx.com/CN/abstract/abstract10732.shtml
He X Z, Zhou Z, Mao P F, et al. Design and experimental study of osculating inward turning cone waverider/inlet (OICWI)[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(3):39-44. http://www.syltlx.com/CN/abstract/abstract10732.shtml
|
[15] |
范晓樯, 李桦, 易仕和, 等.测压式进气道与飞行器机体气动一体化设计及实验[J].推进技术, 2004, 25(6):499-502. DOI: 10.3321/j.issn:1001-4055.2004.06.005
Fan X Q, Li H, Yi S H, et al. Experimental of aerodynamic performance for hypersonic vehicle integrated with sidewall compression inlet[J]. Journal of Propulsion Technology, 2004, 25(6):499-502. DOI: 10.3321/j.issn:1001-4055.2004.06.005
|
[16] |
Kothari A P, Tarpley C, Mclaughlin T A, et al. Hypersonic vehicle design using inward turning flow fileds[R]. AIAA-1996-2552, 1996.
|
[17] |
尤延铖, 梁德旺.基于内乘波概念的三维变截面高超声速进气道[J].中国科学(E辑:技术科学), 2009, 39(8):1483-1494. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-ce200908016
You Y C, Liang D W. Design concept of three-dimensional section controllable internal waverider hypersonic inlet[J]. Science in China (Series E:Technologica), 2009, 39(8):1483-1494. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-ce200908016
|
[18] |
Webster F F, Bucy J A. ASALM-PTV chin inlet technology overview[R]. AIAA-1979-1240, 1979.
|
[19] |
Smart M K. Design of three-dimensional hypersonic inlets with rectangular-to-elliptical shape transition[J]. Journal of Propulsion and Power, 1998, 15(3):408-416. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201209014
|
[20] |
Gollan R J, Smart M K. Design of modular shape-transition inlets for a conical hypersonic vehicle[J]. Journal of Propulsion and Power, 2013, 29(4):832-838. DOI: 10.2514/1.B34672
|
[21] |
李怡庆, 周驯黄, 朱呈祥, 等.曲锥前体/三维内转进气道一体化设计与分析[J].航空动力学报, 2018, 33(1):87-96. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkdlxb201801011
Li Y Q, Zhou X H, Zhu C X, et al. Integration design and analysis for curved conical forebody and three-dimensional inward turning inlet[J]. Journal of Aerospace Power, 2018, 33(1):87-96. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkdlxb201801011
|
[1] | LI Meng, ZHAO Huiyong, YUAN Qiang, CHEN Li, MU Jinhe. Experimental research on the influence of turbulence intensity on boundary layer transition in Mach 3 supersonic flow[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(6): 56-64. DOI: 10.11729/syltlx20220087 |
[2] | LIANG Zhi, HU Fei, SHI Yu, ZHANG Zhe, LIU Lei. Research of mast shadow effect on the average wind speed and turbulence intensity by field experiment[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(2): 88-97. DOI: 10.11729/syltlx20220010 |
[3] | ZHU Bo, CHEN Jiming, WU Wei, PEI Haitao. Experimental investigation of turbulence intensity measurement in continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20220034 |
[4] | YANG Junwei, YANG Hua, FU Shifeng, ZONG Wangwang, SHA Chenglong. Wind tunnel experimental study of the grille-generated turbulence in the short test section[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(6): 86-93. DOI: 10.11729/syltlx20210042 |
[5] | HU Shangyu, LI Qiusheng, ZHANG Ming. Active turbulence simulation study of wind loads on standard low-rise building[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 22-29. DOI: 10.11729/syltlx20190157 |
[6] | Yu Qianqian, Wang Jinhua, Zhang Weijie, Zhang Meng, Huang Zuohua. Development of scale-controlled premixed turbulent burner and the flame structure analysis[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 10-17. DOI: 10.11729/syltlx20170150 |
[7] | Ma Ziran, Xu Minyi, Luan Jian, Liu Xiaopeng, Zhao Feifei. Statistical properties of turbulent free jets issuing from rectangular nozzles with different aspect ratios[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(1): 54-61. DOI: 10.11729/syltlx20160116 |
[8] | Zhu Bo, Peng Qiang, Tang Gengsheng. Digital signal process of low turbulence intensity based on EMD[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(5): 74-79. DOI: 10.11729/syltlx20150148 |
[9] | WU Wen-fei, XIE Jing-xing, GONG Zhi-jun, LI Bao-wei. PIV measurements of the turbulence integral length scale on cold combustion flow field in burner zone of tangential firing boiler[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(2): 38-41,50. DOI: 10.3969/j.issn.1672-9897.2012.02.008 |
[10] | LIU Gang, WANG Yang, WANG Xue-yan, SHI Jia-tao, WANG Jing. PIV measurements of the ILS on in-cylinder gas turbulent flow field of gasoline engine[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(1): 59-63,67. DOI: 10.3969/j.issn.1672-9897.2007.01.012 |
1. |
郭沛洋,张毅,张梦卓,胡海豹. 亲水-超疏水相间表面通气减阻实验研究. 力学学报. 2024(01): 94-100 .
![]() | |
2. |
秦立果,刘建波,李航,卢山,马泽宇,王征,董光能. 水下湍流减阻技术研究进展. 表面技术. 2024(16): 1-18 .
![]() | |
3. |
张春来,张丽霞,王潇,吴银涛,王波. 沟槽型微纳复合结构表面的制备与减阻性能研究. 材料导报. 2023(12): 239-243 .
![]() | |
4. |
张奕,潘翀,窦建宇,张淼. 微型涡流发生器影响下的湍流边界层流场与摩阻特性. 实验流体力学. 2023(04): 48-58 .
![]() | |
5. |
李茂林,张浩,玄克勇,石若冉,张志. 壁面微沟槽减阻技术研究进展. 煤气与热力. 2023(10): 12-19 .
![]() | |
6. |
李炳炘,张浩,玄克勇,孙国梁. 微沟槽减阻技术研究现状与进展综述. 煤气与热力. 2023(12): 21-27 .
![]() | |
7. |
罗忠,刘凯,周欣,胡俊波. 水下目标壳体复合涂层阻力试验. 船舶工程. 2022(09): 147-151 .
![]() |