Deng Fan, Ye Youda, Jiao Zihan, Liu Hui. Research on HIFiRE project's hypersonic vehicle integrated design of aerodynamic and scramjet propulsion[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 73-80. DOI: 10.11729/syltlx20160125
Citation: Deng Fan, Ye Youda, Jiao Zihan, Liu Hui. Research on HIFiRE project's hypersonic vehicle integrated design of aerodynamic and scramjet propulsion[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 73-80. DOI: 10.11729/syltlx20160125

Research on HIFiRE project's hypersonic vehicle integrated design of aerodynamic and scramjet propulsion

More Information
  • Received Date: August 24, 2016
  • Revised Date: September 29, 2016
  • By the HIFiRE project, America and Australia have deeply investigated the aerodynamics, propulsion and controlling system of hypersonic aircrafts. The high-speed ability is evaluated for the integrated design of aircrafts with propulsion system. A series of valuable flight-data and staged achievements are obtained by the flight tests of single-target evaluation and step-by-step improvement, the principal study of waverider shapes and different propulsion systems, and the verification of designing condition by flight tests. The key technique and experimental conclusion are summarized for the overall design by organizing the flight tests of dynamics/propulsion integrated processes. Moreover, the developing trend is analyzed for the aircraft with propulsion system. The results show that the unit Reynolds number of the transition is between 3×106 and 4×106, and a combination of scramjet and waverider with high lift characteristics at small attack angle is the optimized design, which gives some suggestions for the overall design of high-speed aircrafts with scramjet.
  • [1]
    Dolvin D. Hypersonic international flight research and experimentation (HIFiRE) fundamental science and technology development strategy[R]. AIAA-2008-2581, 2008.
    [2]
    Schmisseur J D. Hypersonics into the 21st century:a perspective on AFOSR-sponsored research in aerothermodynamics[J]. Progress in Aerospace Sciences, 2015, 72:3-16. DOI: 10.1016/j.paerosci.2014.09.009
    [3]
    Kimmel R, Adamczak D, Stanfield S, et al. HIFiRE-1 boundary layer transition measurements[C]//Proceedings of the 28th International Congress of the Aeronautical Sciences, 2012.
    [4]
    Adamczak D, Kimmel R L, Paull A, et al. HIFiRE-1 flight trajectory estimation and initial experimental results[R]. AIAA-2011-2358, 2011.
    [5]
    Li F, Choudhari M, Chang C L, et al. Hypersonic transition analysis for HIFiRE experiments[C]. Hypersonic Laminar-Turbulent Transition Meeting, California, 2012.
    [6]
    Willems S, Gülhan A, Juliano T J, et al. Laminar to turbulent transition on the HIFiRE-1 cone at Mach 7 and high angle of attack[R]. AIAA-2014-0428, 2014.
    [7]
    Kimmel R, Adamczak D, Berger K, et al. HIFiRE-5 flight vehicle design[R]. AIAA-2010-4985, 2010.
    [8]
    Kimmel R L, Adamczak D, Juliano T J. HIFiRE-5 flight test preliminary results[R]. AIAA-2013-0377, 2013.
    [9]
    Jewell J S, Miller J H, Kimmel R L. Correlation of HIFiRE-5 flight data with computed pressure and heat transfer[R]. AIAA-2015-2319, 2015.
    [10]
    Kimmel R L, Adamczak D, Borg M, et al. HIFiRE-1 and HIFiRE-5 test results[R]. AFRL-RQ-WP-TR-2014-0038, 2014.
    [11]
    Borg M P, Kimmel R L, Stanfield S. Travelingcrossflow instability for the HIFiRE-5 elliptic cone[J]. Journal of Spacecraft and Rockets, 2015, 52(3):664-673. DOI: 10.2514/1.A33145
    [12]
    Kimmel R L, Borg M P, Jewell J S, et al. HIFiRE-5 boundary layer transition and HIFiRE-1 shock boundary layer interaction[R]. AFRL-RQ-WP-TR-2015-0151. 2015.
    [13]
    叶友达.高超声速空气动力学研究进展与趋势[J].科学通报, 2015, 60:1095-1103. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201512007.htm

    Ye Y D. Advances and prospects in hypersonic aerodynamics[J]. ChinSci Bull, 2015, 60:1095-1103. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201512007.htm
    [14]
    贺旭照, 周正, 毛鹏飞, 等.密切曲面内锥乘波前体进气道设计和试验研究[J].实验流体力学, 2014, 28(3):39-44. DOI: 10.11729/syltlx20120176

    He X Z, Zhou Z, Mao P F, et al. Design and experimental study of osculating inward turning conewaverider/inlet (OICWI)[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(3):39-44. DOI: 10.11729/syltlx20120176
    [15]
    Smith T R, Bowcutt K G, Selmon J R, et al. HIFiRE-4:a low-cost aerodynamics, stability, and control hypersonic flight experiment[R]. AIAA-2011-2275, 2011.
    [16]
    Prime Z, Doolan C, Cazzolato B. Longitudinal 'L' adaptive control of a hypersonic re-entry experiment[C]. AIAC15:15th Australian International Aerospace Congress. 2013:717.
    [17]
    Lau K Y, Woo Y, Tran J, et al. The aerothermal, thermal and structural design process and criteria for the HIFiRE-4 flight test vehicle[R]. AIAA-2012-5842, 2012.
    [18]
    Cabell K, Hass N, Storch A, et al. HIFiRE direct-connect rig (HDCR) phase I scramjet test results from the NASA Langley arc-heated scramjet test facility[R]. AIAA-2011-2248, 2011.
    [19]
    Jackson K R, Gruber M R, Buccellato S. HIFiRE flight 2 overview and status update 2011[R]. AIAA-2011-2202, 2011.
    [20]
    Kevin Jackson, Mark Gruber, Salvatore Buccellato. An overview of the HIFiRE flight 2 project[R]. AIAA-2013-0695, 2013.
    [21]
    姚路, 刘文清, 阚瑞峰, 等.小型化TDLAS发动机测温系统的研究及进展[J].实验流体力学, 2015, 29(1):71-76. DOI: 10.11729/syltlx20140025

    Yao L, Liu W Q, Kan R F, et al. Research and development of a compact TDLAS system to measure scramjet combustion temperature[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(1):71-76. DOI: 10.11729/syltlx20140025
    [22]
    赵慧勇, 易淼荣.高超声速进气道强制转捩装置设计综述[J].空气动力学学报, 2014, 32(5):623-627. DOI: 10.7638/kqdlxxb-2014.0095

    Zhao H Y, Yi M R. Review of design for forced-transition trip of hypersonic inlet[J]. Acta Aerodynamica Sinica, 2014, 32(5):623-627. DOI: 10.7638/kqdlxxb-2014.0095
    [23]
    Ferlemann P G. Forebody and inlet design for the hifire 2 flight test[C]. JANNAF Airbreathing Propulsion Subcommittee Meeting, Boston, Massachusetts, 2008.
    [24]
    Boyce R R, McIntyre T. Combustion scaling laws and inlet starting for Mach 8 inlet-injection radical farming scramjets[R]. AOARD 2010-094019, 2010.
    [25]
    Capra B R, Boyce R R, Brieschenk S. Numerical modelling of porous injection in a radical farming scramjet[C]. Proceedings of the 28th Congress of the International Council of the Aeronautical Sciences, 2012.
    [26]
    Capra B R, Boyce R R, Kuhn M, et al. Porous versus porthole fuel injection in a radical farming scramjet:numerical analysis[J]. Journal of Propulsion and Power, 2015, 31(3):789-804. DOI: 10.2514/1.B35404
    [27]
    Capra B R. Porous fuel injection with oxygen enrichment in a viable scramjet engine[C]//The Proceedings of the 19th Australasian Fluid Mechanics Conference, 2014.
    [28]
    Ogawa H, Capra B, Lorrain P. Numerical investigation of upstream fuel injection through porous media for scramjet engines via surrogate-assisted evolutionary algorithms[R]. AIAA-2015-0884, 2015.
    [29]
    Eggers T, Silvester T B, Paull A, et al. Aerodynamic design of hypersonic re-entry flight HIFiRE 7[R]. AIAA-2009-7256, 2009.
    [30]
    Roberts M E, Smart M K, Frost M A. HIFiRE 7:design to achieve scientific goals[R]. AIAA-2012-5841, 2012.
    [31]
    Gollan R J, Ferlemann P G. Investigation of REST-class hypersonic inlet designs[R]. AIAA-2011-2254, 2011.
    [32]
    Wilson Y K Chan, David J Mee, Michael K Smart, et al. Drag reduction by boundary-layer combustion:effects of flow disturbances from rectangular-to-elliptical-shape-transition inlets[J]. Journal of Propulsion and Power, 2015, 31(5):1256-1267. DOI: 10.2514/1.B35335
    [33]
    Chan W Y K, Mee D J, Smart M K, et al. Boundary layer combustion for viscous drag reduction in practical scramjet configurations[C]. 27th International Council of the Aeronautical Sciences, 2010.
    [34]
    黄伟, 罗世彬, 柳军, 等.基于乘波技术的高超声速巡航飞行器发展趋势与管理模式[J].导弹与航天运载技术, 2009, (4):23-29. http://www.cnki.com.cn/Article/CJFDTOTAL-DDYH200904010.htm

    Huang W, Luo S B, Liu J, et al. Developmental trend and administrative mode of hypersonic cruise vehicle based on waverider technique[J]. Missile and Space Vehicle, 2009, (4):23-29. http://www.cnki.com.cn/Article/CJFDTOTAL-DDYH200904010.htm
    [35]
    Bolender M A, Staines J T, Dolvin D J. HIFiRE 6:an adaptive flight control experiment[C]. 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Nashville, TN, 2012. AIAA-2012-0252.
    [36]
    Wiese D P, Annaswamy A M, Muse J A, et al. Adaptive control of a generic hypersonic vehicle[C]. AIAA Guidance, Navigation, and Control (GNC) Conference, 2013. AIAA-2013-4514.
    [37]
    Bisek N J. High-fidelity simulations of the HIFiRE-6 flow path at angle of attack[C]. 46th AIAA Fluid Dynamics Conference, 2016. AIAA-2016-4276.
    [38]
    Eric J S, Scott R H, Casey J R, et al. HIFiRE-6 unstart conditions at off-design Mach numbers[C]. 53rd AIAA Aerospace Sciences Meeting, 2015. AIAA-2015-0109.
    [39]
    Alesi H, Paull A, Smart M, et al. A concept for the HIFiRE-8 flight test[C]. 22nd ESA Symposium on European Rocket and Balloon Programmes and Related Research, 2015, 730:401-408.
    [40]
    Laurence S J, Karl S, Hannemann K. Experimental and numerical investigation of the HyShot Ⅱ flight experiment[C]. 29th International Symposium on Shock Waves 1. Springer International Publishing, 2015:307-312.
    [41]
    Berry S A, Berger K T, Brauckmann G J, et al. NASA Langley experimental aerothermodynamic contributions to slender and winged hypersonic vehicles[C]. 53rd AIAA Aerospace Sciences Meeting, 2015:0213.
    [42]
    Walker S, Rodgers F, Paull A, et al. HyCAUSE flight test program[R]. AIAA-2008-2580, 2008.
  • Related Articles

    [1]LIU Jingcheng, LIU Jianhua, ZHANG Yongming. Review of flow stability and natural transition of boundary layers on underwater axisymmetric bodies[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(2): 40-51. DOI: 10.11729/syltlx20230103
    [2]CHEN Xiang, ZHAN Jingxia, CHEN Ke, WEI Zhongcheng, CAO Yuan. Unsteady aerodynamic modeling research and virtual flight test verification[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(3): 65-72. DOI: 10.11729/syltlx20210143
    [3]LIAN Zhenzeng, ZHANG Hui, YAN Wencheng, KONG Peng. Research on improvement measures of transverse heading of general aircraft based on spoiler[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(5): 34-39. DOI: 10.11729/syltlx20200066
    [4]LIU Yu, XIAO Baoguo, WANG Lan, CHEN Weiqiang. Standing stability enhancement method of oblique detonation waves in a confined space and its experimental validation[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 109-116. DOI: 10.11729/syltlx20200084
    [5]YAO Zhaohui, ZHANG Jingxian, HAO Pengfei. Effect of surface micro/nano-structure on gas-water interface stability and flow drag reduction[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 73-79. DOI: 10.11729/syltlx20190161
    [6]ZHANG Shiyu, ZHAO Junbo, FU Zengliang, LIANG Bin, ZHOU Jiajian. Wind tunnel based virtual flight testing research of F-16 fighter[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 49-54, 86. DOI: 10.11729/syltlx20180157
    [7]MENG Xuan-shi, CAI Jin-sheng, LUO Shi-jun, LIU Feng. Effects of low dorsal fin on the stability of vortex flow over slender delta wing[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(3): 45-49. DOI: 10.3969/j.issn.1672-9897.2012.03.008
    [8]SHAO Ya-hui, GE Yao-jun, KE Shi-tang, YANG Yong-xin. Theoretical research on the aerodynamic stability of super-longspan suspension bridge with a main span of 5000m[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(1): 30-36. DOI: 10.3969/j.issn.1672-9897.2012.01.007
    [9]SHAO Ya-hui, GE Yao-jun, KE Shi-tang, YANG Yong-xin. Wind tunnel test on the aerodynamic stability of super-long span suspension bridge with a main span of 5000m[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(6): 38-44. DOI: 10.3969/j.issn.1672-9897.2011.06.008
    [10]CHEN Bin. Investigation of improving the lateral static stability for the aircraft applied to high-subsonic flow and high angle of attack[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(1): 109-112. DOI: 10.3969/j.issn.1672-9897.2005.01.022
  • Cited by

    Periodical cited type(0)

    Other cited types(3)

Catalog

    Article Metrics

    Article views (630) PDF downloads (61) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close