Citation: | YANG W B, ZHANG H L, QI X H, et al. Characterization of thermodynamic non-equilibrium of plasma flow using coherent anti-Stokes Raman scattering[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20240048. |
Temperature is considered to be one of the most concerned parameters to quantitatively describe flow characteristics, of which the measurement accuracy directly affects the prediction of aerodynamic, aerothermal and thermal protection performance of hypersonic vehicles. Based on the principles of Coherent Anti-Stokes Raman Scattering (CARS), a CARS spectral computation and vib-rotational temperature inversion program is proposed for characterizing the thermodynamic non-equilibrium properties of the high-temperature gas flow field. And corresponding accuracy from 1000 K to 2300 K is verified in a static environment. A non-equilibrium microwave plasma flow is built and its vibrational temperature and rotational temperature with different pressures, N2 volumetric flow rate, and compositions are obtained by using the developed program. The results show that within the range of experimental conditions, with pressure increasing, the vibrational temperature and rotational temperature decrease, while the thermodynamic non-equilibrium degree increases but corresponding increase rate decreases. With N2 volumetric flow rate increasing, the vibrational temperature and rotational temperature first increase and then decrease, while the thermodynamic non-equilibrium degree exhibits an opposite trend. With Ar volume fraction increasing, the vibrational temperature first increases and then decreases, and the rotational temperature increases, while the thermodynamic non-equilibrium degree decreases.
[1] |
姜宗林, 李进平, 胡宗民, 等. 高超声速飞行复现风洞理论与方法[J]. 力学学报, 2018, 50(6): 1283–1291. DOI: 10.6052/0459-1879-18-238
JIANG Z L, LI J P, HU Z M, et al. Shock tunnel theory and methods for duplicating hypersonic flight conditions[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(6): 1283–1291. doi: 10.6052/0459-1879-18-238
|
[2] |
KNISELY C P, ZHONG X L. Impact of vibrational nonequilibrium on the supersonic mode in hypersonic boundary layers[J]. AIAA Journal, 2020, 58(4): 1704–1714. doi: 10.2514/1.j058758
|
[3] |
CHEN X L, WANG L, FU S. Secondary instability of the hypersonic high-enthalpy boundary layers with thermal-chemical nonequilibrium effects[J]. Physics of Fluids, 2021, 33(3): 034132. doi: 10.1063/5.0045184
|
[4] |
LI W J, HUANG J, ZHANG Z W, et al. A model for thermal protection ablative material with local thermal non-equilibrium and thermal radiation mechanisms[J]. Acta Astronautica, 2021, 183: 101–111. doi: 10.1016/j.actaastro.2021.03.001
|
[5] |
PARK C. Hypersonic aerothermodynamics: past, present and future[J]. International Journal of Aeronautical and Space Sciences, 2013, 14(1): 1–10. doi: 10.5139/IJASS.2013.14.1.1
|
[6] |
HOLDEN M, WADHAMS T, MACLEAN M, et al. Review of basic research and development programs conducted in the LENS facilities in hypersonic flows[C]//Proceedings of the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2012. doi: 10.2514/6.2012-469
|
[7] |
PARK C. Stagnation-region heating environment of the Galileo probe[J]. Journal of Thermophysics and Heat Transfer, 2009, 23(3): 417–424. doi: 10.2514/1.38712
|
[8] |
MATSUYAMA S, OHNISHI N, SASOH A, et al. Numerical simulation of Galileo probe entry flowfield with radiation and ablation[J]. Journal of Thermophysics and Heat Transfer, 2005, 19(1): 28–35. doi: 10.2514/1.10264
|
[9] |
GRISCH F, BOUCHARDY P, JOLY V, et al. Coherent anti-stokes Raman scattering measurements and computational modeling of nonequilibrium flow[J]. AIAA Journal, 2000, 38(9): 1669–1675. doi: 10.2514/2.1152
|
[10] |
KIM M K, ESSER B, KOCH U, et al. Numerical and experimental study of high enthalpy flows in a hypersonic plasma wind tunnel: L3K[C]//Proc of the Proceedings of the 42nd AIAA Thermophysics Conference. 2011. doi: 10.2514/6.2011-3777
|
[11] |
GÜLHAN A, ESSER B, KOCH U, et al. Characterization of high-enthalpy-flow environment for ablation material tests using advanced diagnostics[J]. AIAA Journal, 2018, 56(3): 1072–1084. doi: 10.2514/1.j056312
|
[12] |
SAKURAI K, OSADA T, NIINOMI S, et al. High-speed visualization of total radiation and CARS measurement of vibrational/rotational temperatures behind hypervelocity shock waves of 5 km/s[J]. Journal of JSEM, 2010, 10: 85–89. doi: 10.11395/jjsem.10.s85
|
[13] |
VENIGALLA H B, NIINOMI S, OGURO M, et al. The spatial distribution of ro/vibrational temperatures for nitrogen molecules behind hypervelocity shock waves by CARS measurement[J]. Journal of JSEM, 2012, 12: 46–50. doi: 10.11395/jjsem.12.s46
|
[14] |
DOGARIU A, DOGARIU L E, SMITH M S, et al. Single Shot Temperature Measurements using Coherent Anti-Stokes Raman Scattering in Mach 14 Flow at the Hypervelocity AEDC Tunnel 9[C]//Proceedings of the AIAA Scitech 2019 Forum. 2019. doi: 10.2514/6.2019-1089
|
[15] |
DOGARIU A, DOGARIU L E, SMITH M S, et al. Velocity and temperature measurements in Mach 18 nitrogen flow at tunnel 9[C]//Proceedings of the AIAA Scitech 2021 Forum. 2021. doi: 10.2514/6.2021-0020
|
[16] |
MONTELLO A, NISHIHARA M, RICH J W, et al. Picosecond USED-CARS for simultaneous rotational/translational and vibrational temperature measurement of nitrogen in a nonequilibrium Mach 5 flow[C]//Proceedings of the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2012. doi: 10.2514/6.2012-239
|
[17] |
杨文斌, 齐新华, 李猛, 等. 超燃冲压发动机燃烧室出口温度场分布CARS测量[J]. 推进技术, 2022, 43(9): 210190. DOI: 10.13675/j.cnki.tjjs.210190
YANG W B, QI X H, LI M, et al. Outlet temperature measurements of scramjet combustor using Coherent Anti-Stokes Raman scattering[J]. Journal of Propulsion Technology, 2022, 43(9): 210190. doi: 10.13675/j.cnki.tjjs.210190
|
[18] |
杨文斌, 齐新华, 王林森, 等. 基于CARS技术的超燃冲压发动机点火过程温度测量[J]. 气体物理, 2020, 5(2): 8–13. DOI: 10.19527/j.cnki.2096-1642.0800
YANG W B, QI X H, WANG L S, et al. Temperature measurement based on CARS in scramjet ignition process[J]. Physics of Gases, 2020, 5(2): 8–13. doi: 10.19527/j.cnki.2096-1642.0800
|
[19] |
HUANG A, XU Z Y, DENG H, et al. High-pressure gas temperature sensing for exit plane of aero-engine combustor using tunable diode laser absorption spectroscopy[J]. Microwave and Optical Technology Letters, 2024, 66(1): 1–9. doi: 10.1002/mop.33897
|
[20] |
HU Z Y, LIU J R, YE J F, et al. Laser-based measurements of temperature, species, and velocity in engine combustor[C]//Proc of the 2nd International Symposium on Laser Interaction with Matter. 2013. doi: 10.1117/12.2011241
|
[21] |
张虎. 基于CARS的火焰温度测量技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2009.
ZHANG H. Study on flame temperature measurement based on CARS[D]. Harbin: Harbin Institute of Technology, 2009.
|
[22] |
DEDIC C E. Hybrid fs/ps coherent anti-Stokes Raman scattering for multiparameter measurements of combustion and nonequilibrium[D]. Iowa State University, 2017.
|
[23] |
赵松原. 模拟退火结合正交分解算法的气动外形最优化设计[D]. 南京, 南京航空航天大学, 2006.
ZHAO S Y. Research on optimum aerodynamic design using simulated annealing algorithm and POD[D]. NanJing: Nanjing University of Aeronautics and Astronautics, 2006.
|
[24] |
WEIGAND P, LÜCKERATH R, MEIER W. Documentation of flat premixed laminar CH4/air standard flames: temperatures and species concentrations[J/OL]. http//www. dlr. de/VT/Datenarchiv, 2003.
|
[1] | GAO Lihua, HUANG Longtai, FU Hao, WANG Kunlun, HUANG Yong. Wind tunnel test for aerodynamics of wing-in-ground craft flying near smooth/wavy surface[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(5): 68-74. DOI: 10.11729/syltlx20200077 |
[2] | LUO Changtong, HU Zongmin, LIU Yunfeng, JIANG Zonglin. Research progress on ground-to-flight correlation of aerodynamic force and heating data from hypersonic wind tunnels[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(3): 78-89. DOI: 10.11729/syltlx20200006 |
[3] | Miao Wenbo, Shi Ketian, Ou Dongbin, Cao Zhanwei, Ai Bangcheng. Analysis of surface recombination effect in arc-jet aero-heating test[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 20-24. DOI: 10.11729/syltlx20180177 |
[4] | Wang Guolin, Zhou Yinjia, Jin Hua, Meng Songhe. Study on the influence of catalytic effect on the aerothermal environment by the flow-heat transfer coupling numerical analysis[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 13-19. DOI: 10.11729/syltlx20180159 |
[5] | Wang Guolin, Meng Songhe, Jin Hua. The validity analysis of ground simulation test for non-ablative thermal protection materials[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 79-87. DOI: 10.11729/syltlx20180122 |
[6] | Li Xingwei, Li Cong, Xu Chuanbao, Li Shengwen. Experimental research on the coupling effect of propeller slipstream and flat tail deep stall on aerodynamic characteristics of airplane[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1): 84-89. DOI: 10.11729/syltlx20170068 |
[7] | Sun Chenghong, Dai chin. The influence of the tip sails shape on the wing aerodynamics in ground effect[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(6): 10-17. DOI: 10.11729/syltlx20160054 |
[8] | Fang Yue, Zhou Zhiyu, Zhang Lianhe. Study on prediction of ground effect test data[J]. Journal of Experiments in Fluid Mechanics, 2015, (1): 60-65. DOI: 10.11729/syltlx20130120 |
[9] | YANG Jiong, LIANG Jian, LI Zheng-chu. Key technical research on developing moving belt ground proximity[J]. Journal of Experiments in Fluid Mechanics, 2008, 22(4): 68-71. DOI: 10.3969/j.issn.1672-9897.2008.04.015 |
[10] | Chen Wei-fang, SHI Yu-zhong, WU Qi-feng. A law of similitude for ballistic target ground testing[J]. Journal of Experiments in Fluid Mechanics, 2001, 15(1): 22-25. DOI: 10.3969/j.issn.1672-9897.2001.01.004 |