Citation: | Wang Guolin, Zhou Yinjia, Jin Hua, Meng Songhe. Study on the influence of catalytic effect on the aerothermal environment by the flow-heat transfer coupling numerical analysis[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 13-19. DOI: 10.11729/syltlx20180159 |
[1] |
Chen Y K, Henline W D, Tauber M E. Mars pathfinder trajectory based heating and ablation calculations[J]. Journal of Spacecraft and Rockets, 1995, 32(2):225-230. DOI: 10.2514/3.26600
|
[2] |
Adam J C. Coupled fluid-thermal-structural modeling and analysis of hypersonic flight vehicle structures[D]. Columbus: Ohio State University, 2010.
|
[3] |
Olynick D R, Henline W D. Navier-Stokes heating calculations for benchmark thermal protection system sizing[J]. Journal of Spacecraft and Rockets, 1996, 33(6):807-814. DOI: 10.2514/3.26842
|
[4] |
Calvo J, Mack A, Bozic O. Study of the heating of a hypersonic projectile through a multidisciplinary simulation[C]//Proc of European Conference on Computational Fluid Dynamics. 2006.
|
[5] |
Molvik G A, Milos F S, Chen Y K, et al. Computation of high speed flow fields with multidimensional heat conduction[R]. AIAA-1995-2116, 1995.
|
[6] |
Yamamoto Y, Yoshioka M. CFD and FEM coupling analysis of OREX aerothermodynamic flight data[R]. AIAA-1995-2087, 1995.
|
[7] |
Thornton E A, Dechaumphai P. Coupled flow, thermal, and structural analysis of aerodynamically heated panels[J]. Journal of Aircraft, 1988, 25(11):1052-1059. DOI: 10.2514/3.45702
|
[8] |
桂业伟, 袁湘江.类前缘防热层流场与热响应耦合计算研究[J].工程热物理学报, 2002, 23(6):733-735. DOI: 10.3321/j.issn:0253-231X.2002.06.022
Gui Y W, Yuan X J. Numerical simulation on the coupling phenomena of aerodynamic heating with thermal response in the region of the leading edge[J]. Journal of Engineering Thermophysics, 2002, 23(6):733-735. DOI: 10.3321/j.issn:0253-231X.2002.06.022
|
[9] |
张兵, 韩景龙.多场耦合计算平台与高超声速热防护结构传热问题研究[J].航空学报, 2011, 32(3):400-409. http://d.old.wanfangdata.com.cn/Periodical/hkxb201103003
Zhang B, Han J L. Multi-field coupled computing platform and thermal transfer of hypersonic thermal protectionstrucutres[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(3):400-409. http://d.old.wanfangdata.com.cn/Periodical/hkxb201103003
|
[10] |
Zhang S T, Chen F, Liu H. Interated of fluid-thermal-structural analysis for predicting aerothermal environment of hypersonic vehicles[R]. AIAA-2014-1394, 2014.
|
[11] |
孟松鹤, 金华, 王国林, 等.热防护材料表面催化特性研究进展[J].航空学报, 2014, 35(2):287-302. http://d.old.wanfangdata.com.cn/Periodical/hkxb201402001
Meng S H, Jin H, Wang G L, et al. Research advances on surface catalytic properties of thermal protection materials[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2):287-302. http://d.old.wanfangdata.com.cn/Periodical/hkxb201402001
|
[12] |
Paterna D, Monti R, Savino R, et al. Experimental and numerical investigation of martian atmosphere entry[J]. Journal of Thermophysics and Heat Transfer, 2002, 39(2):227-236. http://cn.bing.com/academic/profile?id=ca0050fa6402209d0d4a2b4e4e313f28&encoded=0&v=paper_preview&mkt=zh-cn
|
[13] |
Wright M, Loomis M, Papadopoulos P. Aerothermal analysis of the project fire Ⅱ afterbody flow[J]. AIAA-2001-3065, 2001.
|
[14] |
杨肖峰, 唐伟, 桂业伟. MSL火星探测器高超声速流场预测及气动性分析[J].宇航学报, 2015, 36(4):383-389. DOI: 10.3873/j.issn.1000-1328.2015.04.003
Yang X F, Tang W, Gui Y W. Hypersonic flow field prediction and aerodynamics analysis for MSL entry capsule[J]. Journal of Astronautics, 2015, 36(4):383-389. DOI: 10.3873/j.issn.1000-1328.2015.04.003
|
[15] |
刘宗庆, 董维中, 丁明松, 等.火星探测器气动热环境和其动力特性的数值模拟研究[J].空气动力学学报, 2018, 36(4):642-650. DOI: 10.7638/kqdlxxb-2016.0053
Liu Q Z, Dong W Z, Ding M S, et al. Numerical simulation of aerothermal environments and aerodynamic characteristics of Mars entry capsules[J]. Acta Aerodynamics Sinica, 2018, 36(4):642-650. DOI: 10.7638/kqdlxxb-2016.0053
|
[16] |
Voinov L, Zalogin G N, Lunev V V, et al. Comparative analysis of laboratory and full-scale data on the catalycity of the heat shield for the Bor and Buran orbital vehicles[J]. Cosmonautics and Rocket Production, 1994, 2:51-57.
|
[17] |
董维中, 乐嘉陵, 刘伟雄.驻点壁面催化速率常数确定的研究[J].流体力学实验与测量, 2000, 14(3):1-6. DOI: 10.3969/j.issn.1672-9897.2000.03.001
Dong W Z, Le J L, Liu W X. The determination of catalyticreate constant of surface materials of testing model in the shock tube[J]. Experiments and Measurements in Fluid Mechanics, 2000, 14(3):1-6. DOI: 10.3969/j.issn.1672-9897.2000.03.001
|
[18] |
苗文博, 程晓丽, 艾邦成.壁面催化条件对热环境预测的影响[J].航天器环境工程, 2009, 26(增刊):45-49. http://d.old.wanfangdata.com.cn/Periodical/htqhjgc2009z1013
Miao W B, Cheng X L, Ai B C. The influence of catalyze condition on the thermal environment predicting[J]. Spacecraft Environment Engineering, 2009, 26(S):45-49. http://d.old.wanfangdata.com.cn/Periodical/htqhjgc2009z1013
|
[19] |
苗文博, 程晓丽, 艾邦成, 等.高超声速流动壁面催化复合气动加热特性[J].宇航学报, 2013, 34(3):442-446. DOI: 10.3873/j.issn.1000-1328.2013.03.021
Miao W B, Cheng X L, Ai B C, et al. Surface catalysis recombination aero heating characteristics of hypersonic flow[J]. Journal of Astronautics, 2013, 34(3):442-446. DOI: 10.3873/j.issn.1000-1328.2013.03.021
|
[20] |
李海燕, 石安华, 马平, 等.高超声速非平衡流研究进展[C]//中国力学大会论文集. 2017.
Li H Y, Shi A H, Ma P, et al, Recent advances in hypersonic non-equilibrium flows[C]//Proc of the Chinese Congress of Theoretical and Applied Mechanics. 2017.
|
[21] |
Inger G R, Gnoffo P A. Hypersonic entry heating with discontinuous surfacecatalycity-A combined analytic/CFD approach[R]. AIAA-1996-2150, 1996.
|
[22] |
Prabhu D K, Venkatapathy E, Kontinos D A, et al. X-33 catalytic heating[R]. AIAA-1998-2844, 1998.
|
[23] |
Scott C D, Derry S M. Catalytic recombination and space shuttle heating[R]. AIAA-1982-0841, 1982.
|
[24] |
Ranuzzi G, Grass F, Bisceglia S. Effects of the surface catalysis on high-enthalpy shock- wave/turbulent boundary-layer interactions[R]. AIAA-2005-3219, 2005.
|
[25] |
Viviani A, Pezzella G. Influence of surface catalyticity on reentry aerothermodynamics and heat shield[R]. AIAA-2007-4047, 2007.
|
[26] |
Grumet A A, Anderson J D. The effects of surface catalysis on the hypersonic shock wave/boundary layer interaction[R]. AIAA-1994-2073, 1994.
|
[27] |
Mizoguchi M, Iwata N, Hayashi K, et al. Reduction of aerodynamic heating with wall catalysis by film cooling[R]. AIAA-2006-8068, 2006.
|
[28] |
Shirouzu M, Inouye Y, Watanabe S, et al. Overview of aero and aerothermodynamic researches on HOPE-X and related activities in Japan[R]. AIAA-2004-2426, 2004.
|
[29] |
Peigin S, Kazak V. 3D Thermochemical nonequilibrium viscous gas flow over blunt bodies with catalytic surface at attack and slip angles[R]. AIAA-99-3628, 1999.
|
[30] |
董维中, 高铁锁, 丁明松, 等.高超声速飞行器表面温度分布与气动热耦合数值研究[J].航空学报, 2016, 36(25):311-324. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501025
Dong W Z, Gao T S, Ding M S, et al. Numerical study of coupled surface temperature distribution and aerodynamic heat for hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2016, 36(25):311-324. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501025
|
[31] |
Laux T, Feigl M, Stöckle T, et al. Estimation of the surface catalyticity of PVD coatings by simultaneous heat flux and LIF measurements in high enthalpy air flows[R]. AIAA-2000-2364, 2000.
|
[32] |
Kurotaki T. Catalytic Model on SiO2-based surface and application to real trajectory[J]. Journal of Spacecraft and Rockets, 2001, 38(5):798-800. DOI: 10.2514/2.3749
|
[33] |
周印佳, 孟松鹤, 解维华, 等.高超声速飞行器热环境与结构传热的多场耦合数值研究[J].航空学报, 2016, 37(9):2739-2748. http://d.old.wanfangdata.com.cn/Periodical/hkxb201609012
Zhou Y J, Meng S H, Xie W H, et al. Multi-field coupling numerical analysis of aerothermal environment and structureal heat transfer of hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(9):2739-2748. http://d.old.wanfangdata.com.cn/Periodical/hkxb201609012
|
[34] |
刘丽萍, 王国林, 王一光, 等.高焓化学非平衡流条件下防热材料表面催化特性的试验方法[J].航空学报, 2017, 38(10):121317-1-9. http://d.old.wanfangdata.com.cn/Periodical/hkxb201710010
Liu L P, Wang G L, Wang Y G, et al. Test methods for determining surface catalytic properties of thermal protection materials in high enthalpy chemical non-equilibrium flows[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(10):121317-1-9. http://d.old.wanfangdata.com.cn/Periodical/hkxb201710010
|
[35] |
刘丽萍, 王国林, 王一光, 等.高焓化学非平衡流条件下C/SiC复合材料的催化性能[J].航空学报, 2018, 39(5):621696-1-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201805021
Liu L P, Wang G L, Wang Y G, et al. Catalytic performance of C/SiC composites in high enthalpy chemical non-equilibrium flow[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5):621696-1-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201805021
|
[36] |
Anderson J D. Hypersonic and high temperature gas dynamics[M]. New York:McGraw-Hill, 2006.
|
[1] | WANG Yifan, QIN Qihao, GUAN Ruiqing, XU Jinglei. Experimental study and statistical analysis of flow field pulsation of spiked cylinder[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(6): 30-37. DOI: 10.11729/syltlx20220078 |
[2] | Liu Richao, Le Jialing, Chen Liujun, Yang Shunhua, Song Wenyan. Experimental and numerical study on spray atomization in a double-swirler combustor[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(5): 24-31, 45. DOI: 10.11729/syltlx20170093 |
[3] | Kong Shangfeng, Feng Feng, Deng Hanyu. Breakup of a kerosene droplet at high Weber numbers[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(1): 20-25. DOI: 10.11729/syltlx20160106 |
[4] | Liao Bin, Zhang Guifu, Wang Luhai, Zhu Yujian, Yang Jiming. Deformation and breakup behaviors of a drop in ambient liquid under impact[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(5): 9-16. DOI: 10.11729/syltlx20160029 |
[5] | LIU Zhi-rong, ZHU Rui. Dual wingtips vortexes Rayleigh-Ludwieg instability experimental research[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(2): 24-30. DOI: 10.3969/j.issn.1672-9897.2013.02.005 |
[6] | HUANG Wen-bin, ZOU Li-yong, LIU Jin-hong, TAN Duo-wang, ZHANG Guang-sheng. Effects of initial perturbations on Rayleigh-Taylor instability growth at gas-liquid interface[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(3): 39-41,66. DOI: 10.3969/j.issn.1672-9897.2010.03.008 |
[7] | YANG Lei, HAN Zhao-yuan, HUANG Zhong-wei. Experimental study on breakup and atomization of axisymmetrical dissemination of liquid[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(2): 50-55. DOI: 10.3969/j.issn.1672-9897.2007.02.011 |
[8] | ZHUO Qi-wei, SHI Hong-hui. Experimental study of Richtmyer-Meshkov instability at a gas/liquid interface in a shock tube[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(1): 25-30. DOI: 10.3969/j.issn.1672-9897.2007.01.005 |
[9] | CAI Qing-jun, HAN Zhao-yuan, WAN Qun, ZHANG Shou-qi. An investigation of later period of primary breakup in axisymmetric dissemination of liquid ring[J]. Journal of Experiments in Fluid Mechanics, 2000, 14(1): 57-62. DOI: 10.3969/j.issn.1672-9897.2000.01.007 |
[10] | Cai Qingjun, Han Zhaoyuan, Wan Qun, Zhang Shouqi. An Investigation of Basic Behaviour of Atomization[1〗Region Formed by Secondary Breakup of Liquid Ring[J]. Journal of Experiments in Fluid Mechanics, 1999, 13(2): 22-29. DOI: 10.3969/j.issn.1672-9897.1999.02.004 |