Sun Chenghong, Dai chin. The influence of the tip sails shape on the wing aerodynamics in ground effect[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(6): 10-17. DOI: 10.11729/syltlx20160054
Citation: Sun Chenghong, Dai chin. The influence of the tip sails shape on the wing aerodynamics in ground effect[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(6): 10-17. DOI: 10.11729/syltlx20160054

The influence of the tip sails shape on the wing aerodynamics in ground effect

More Information
  • Received Date: March 29, 2016
  • Revised Date: May 06, 2016
  • The function of the wing tip sails is to scatter the concentrated tip vortices into several smaller scale vortex structures, and accelerate the dissipation of tip vortices, thereby reducing the induced drag. In order to study the influence of wing tip sails on the flow fields and aerodynamics of a wing in ground effect, wind tunnel experiment is conducted to measure aerodynamics and tip vortex structures of a NACA4412 wing fitted with three elliptic tip sails and three trapezoidal tip sails respectively, and the reason of the differences between the aerodynamic loads on the two wings is analyzed by comparing the flow fields of tip vortices. The lift and drag forces are measured using a 6-component balance, the velocity distribution of tip vortices is scanned by a 7-hole probe. The Reynolds number based on the chord length of the wing is 1.5×105. The experimental results show that the differences of lift and drag forces between the two wings increase as the wings get closer to the ground, and the trapezoidal tip sails is more efficient in lift augmentation-drag reduction than the elliptic tip sails. The local flow direction and local incidence of each sails are different for the two wings, which result in different contributions in increasing the lift and reducing the drag.
  • [1]
    Newman B G. Soaring and gliding flight of the black Vulture[J]. Journal of Experimental Biology, 1958, 35:280-285. http://www.researchgate.net/publication/242124205_SOARING_AND_GLIDING_FLIGHT_OF_THE_BLACK_VULTURE
    [2]
    Tucker V A. Aerodynamics of gliding flight in a Harris' hawk, Parabuteo Unicinctus[J]. Journal of Experimental Biology, 1990, 149:469-489. https://www.researchgate.net/publication/239923824_Aerodynamics_of_gliding_flight_in_a_harris'_hawk_Parabuteo_unicinctus
    [3]
    Tucker V A. Pitching equilibrium wing span and tail span in a gliding Harris' hawk, Parabuteo Unicinctus[J]. Journal of Experimental Biology, 1992, 165:21-41. https://www.researchgate.net/publication/254471249_Pitching_equilibrium_wing_span_and_tail_span_in_a_gliding_Harris%27_Hawk_Parabuteo_unicinctus
    [4]
    Tucker V A. Drag reduction by wing tip slots in a gliding Harri's Hawk, Parabuteo Unicinctus[J]. Journal of Experimental Biology, 1993, 198:775-781. https://www.ncbi.nlm.nih.gov/pubmed/9318544
    [5]
    Tucker V A. Gliding birds:reduction of induced drag by wing tip slots between the primary feathers[J]. Journal of Experimental Biology, 1993, 180:285-310. https://www.researchgate.net/publication/255592333_Gliding_birds_Reduction_of_induced_drag_by_wing_tip_slots_between_the_primary_feathers
    [6]
    Spillman J J, Allen J E. The use of wing tip sails to reduce vortex drag[J]. Aeronautical Journal, 1978, 82(813):387-395. https://www.researchgate.net/publication/282580953_The_Use_of_Wing_Tip_Sails_to_Reduce_Vortex_Drag
    [7]
    Spillman J J, McVitie M. Wing tip sails which give lower drag at all normal flight speeds[J]. Aeronautical Journal, 1984, 88(878):362-369. https://www.researchgate.net/publication/294249726_WING_TIP_SAILS_WHICH_GIVE_LOWER_DRAG_AT_ALL_NORMAL_FLIGHT_SPEEDS
    [8]
    陈明岩, 齐孟卜.翼尖帆片的增升减阻研究[J].航空学报, 1994, 15(6):641-646. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB406.000.htm

    Chen M Y, Qi M B. The research of increased lift and reduced drag for wing-tip sails[J]. Acta Aeronautica et Astronautica Sincia, 1994, 15(6):641-646. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB406.000.htm
    [9]
    齐孟卜, 陈明岩.翼尖附近流场研究及帆片减阻机理[J].气动实验与测量控制, 1995, 9(1):38-45. http://www.cnki.com.cn/Article/CJFDTOTAL-LTLC501.005.htm

    Qi M B, Chen M Y. The study of flow field near the wing tip and the mechanism of drag reduction for wing tip sails[J]. Ae-rodynamic experiment and measurement & Control, 1995, 9(1):38-45. http://www.cnki.com.cn/Article/CJFDTOTAL-LTLC501.005.htm
    [10]
    Smith M J, Komerath N, Ames R, et al. Performance analysis of awing with multiple winglets[R]. AIAA-2001-2407, 2001.
    [11]
    Miklosovic D S. Analytic and experimental investigation of dihedral configurations of three-winglet planforms[J]. Journal of Fluids Engineering, 2008, 130-071103. https://www.researchgate.net/publication/245357259_Analytic_and_Experimental_Investigation_of_Dihedral_Configurations_of_Three-Winglet_Planforms
    [12]
    Catalano F M, Ceron-Muñoz H D. Experimental analysis of the aerodynamic characteristics adaptive of multi-winglets[R]. AIAA-2005-1231, 2005.
    [13]
    Cosin R, Catalano F M, Correa L G N, et al. Aerodynamic analysis of multi-winglets for low speed aircraft[C]. 27th International Congress of the Aeronautical Sciences, 2010.
    [14]
    Srikanth G, Surendra B. Experimental investigation on the effect of Multi-winglets[J]. International Journal of mechanical & Industrial Engineering, 2011, 1(1):43-46.
    [15]
    Yang K, Xu S J. Wing tip vortex structure behind an airfoil with flaps at the tip[J]. Science China Physics, Mechanics & Astronomy, 2011, 54(4):743-747. http://mall.cnki.net/magazine/Article/JGXG201104027.htm
    [16]
    杨可, 黄浩, 徐胜金.组合小翼和翼梢喷流对翼尖涡的影响实验研究[J].实验流体力学, 2014, 28(6):27-38. http://www.syltlx.com/CN/Y2014/V28/I6/27

    Yang K, Huang H, Xu S J. Experimental study of effects of multi-winglets and tip blowing upon wingtip vortex[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(6):27-38. http://www.syltlx.com/CN/Y2014/V28/I6/27
    [17]
    Withers P C, Timko P L. The significance of ground effect to the aerodynamics cost of flight and energetics of the black ski-mmer[J]. Journal of Experimental Biology, 1977, 70:13-26. https://www.researchgate.net/publication/268288666_The_significance_of_ground_effect_to_the_aerodynamic_cost_of_flight_and_energetics_of_the_Black_Skimmer_Rhyncops_nigra
    [18]
    Hainsworth F R. Induced drag savings from ground effect and formation flight in brown pelicans[J]. Journal of Experimental Biology, 1988, 135:431-444. http://www.academia.edu/3180003/INDUCED_DRAG_SAVINGS_FROM_GROUND_EFFECT_AND_FORMATION_FLIGHT_IN_BROWN_PELICANS
    [19]
    江永泉.飞机翼梢小翼设计[M].北京:航空工业出版社, 2009.

    Jiang Y Q. Design of aircraft winglet[M]. Beijing:The Publishing Company of Aviation Industry, 2009.
    [20]
    杨岞生, 俞守勤, 飞行器部件空气动力学[M].北京:航空工业出版社, 1987.

    Yang Z S, Yu S Q. Aerodynamics of aircraft components[M]. Beijing:The publishing company of aviation industry, 1987.
    [21]
    Byelinskyy V G, Zinchuk P I. Hydrodynamical characteristics of an ekranoplane wing flying near the wavy sea surface[C]//RTO Meeting Proceedings, 1991:1-12.
    [22]
    章旷.机翼地面效应拖曳水槽实验研究[D].上海大学, 2016.
    [23]
    Kate J, Plotkin A. Low-speed aerodynamics--from wing theory to panel methods[M]. McGraw-Hill Inc, 1991.
  • Related Articles

    [1]DU Baihe, ZHANG Songhe, GE Qiang, WANG Maogang. Study on flow field characteristics of inert gas-air hybrid arc[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(5): 69-75. DOI: 10.11729/syltlx20210052
    [2]ZHANG Xinghuan, ZHANG Pingtao, PENG Bo, YI Xian. Prediction of icing wind tunnel temperature field with machine learning[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(5): 8-15. DOI: 10.11729/syltlx20210196
    [3]Fu Cheng, Zhao Bo, Xu Dachuan, Liao Daxiong, Pei Haitao, Zhu Bo, Qin Honggang. Investigation on flow turbulent characteristics of plate-fin and tube-fin heat exchanger[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(6): 22-27. DOI: 10.11729/syltlx20190036
    [4]Wang Feng, Xu Jinglei, Wang Yangsheng. Study of flow field characteristics of an over-under TBCC exhaust system during mode transition process[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 68-75. DOI: 10.11729/syltlx20190037
    [5]Gong Jishuang, Zhou Lin, Zhang Yining, Teng Honghui. Investigation on flow field structure of rotating detonation using the method of characteristics[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(1): 89-96. DOI: 10.11729/syltlx20180072
    [6]Liao Daxiong, Chen Jiming, Zheng Juan, Chen Qin, Pei Haitao, Wu Shenghao. General performance of 0.6m continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 88-93. DOI: 10.11729/syltlx20170086
    [7]Yang Hong, Luo Yue, Wu Dong, Zhou Ping. Study on supersonic turbulence plate ablation flow field in arc heater[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(4): 72-77. DOI: 10.11729/syltlx20170181
    [8]Yu Mingxing, Bai Shuxin, Xu Xiaoliang, Cao Zhanwei. Research on method for evaluating the thermal protective performance of non-catalysis material in non-equilibrium flow[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4): 84-89. DOI: 10.11729/syltlx20170084
    [9]Luo Yue, Zhou Wei, Yang Hong, Chen Wei. CFD analysis of the arc heater turbulent flow field of flat plate testing[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 86-92. DOI: 10.11729/syltlx20160088
    [10]Yang Bo, Liu Sen. Investigation of the performance of flow field in supersonic/hypersonic wind tunnel with different test section geometry configurations[J]. Journal of Experiments in Fluid Mechanics, 2014, (4): 59-64. DOI: 10.11729/syltlx20130023
  • Cited by

    Periodical cited type(18)

    1. 韩笑,高创,郑怡彤,刘小兵. 切角凹槽矩形截面桥塔的气动特性试验研究. 石家庄铁道大学学报(自然科学版). 2024(01): 9-15+23 .
    2. 白桦,刘博祥,姬乃川,李加武. 节段模型二元端板合理尺寸估算方法. 振动与冲击. 2023(02): 312-320 .
    3. 王仰雪,刘庆宽,靖洪淼,李震,孙一飞. 倾斜栏杆对流线型箱梁涡激振动性能影响的试验研究. 振动与冲击. 2023(06): 232-239+254 .
    4. 于畅,仇法梅,田学东,杨群,刘小兵. 圆角矩形柱平均气动力特性的雷诺数效应试验研究. 石家庄铁道大学学报(自然科学版). 2023(02): 29-34 .
    5. 杨群,于畅,刘小兵,刘庆宽. 不同圆角率的方形断面斯特罗哈数的雷诺数效应研究. 振动与冲击. 2023(11): 223-231 .
    6. 刘庆宽,王仰雪,孙一飞,李震,韩原,靖洪淼. 栏杆高度对流线型箱梁涡振性能影响的试验研究. 湖南大学学报(自然科学版). 2023(07): 140-150 .
    7. 刘路路,杨皓然,邹云峰,何旭辉,韩艳,陈志强. 公铁同层双幅非对称主梁气动干扰特性研究. 铁道科学与工程学报. 2023(10): 3861-3872 .
    8. 杨群,于畅,于文文,刘小兵. 圆角方柱气动特性的风洞试验研究. 振动与冲击. 2023(24): 59-68 .
    9. 韩振,李波,甄伟,杨庆山,田玉基. 宽厚比为5的超高层建筑风荷载特性研究. 哈尔滨工程大学学报. 2022(02): 196-202 .
    10. 张庆华,马文勇,杨杰,张彦,周帅伟. 不同风倾角下典型等边角钢静风力风洞试验研究. 振动工程学报. 2022(02): 277-283 .
    11. 白桦,王涵,姬乃川,李加武. 节段模型长宽比对风洞测力试验及计算分析的影响. 中国公路学报. 2022(08): 202-212 .
    12. 杨群,刘庆宽,韩瑞,刘小兵. 不同圆角率的方形断面气动特性的雷诺数效应. 振动与冲击. 2020(04): 150-156 .
    13. 沈国辉,姚剑锋,郭勇,邢月龙,楼文娟. 直径30 cm圆柱的气动力参数和绕流特性研究. 振动与冲击. 2020(06): 22-28 .
    14. 温青,池俊豪,华旭刚,王修勇,孙洪鑫. 端部条件和展弦比对矩形断面节段模型气动力特征的影响. 实验流体力学. 2020(04): 36-43 . 本站查看
    15. 任若松,梁新华,刘小兵,马文勇,刘庆宽. 准流线型桥梁断面气动力特性的雷诺数效应研究. 工程力学. 2020(S1): 139-144+167 .
    16. 李海飞,梁新华,孙一飞,崔会敏,刘庆宽. 流线型桥梁断面表面脉动风荷载特性研究. 工程力学. 2020(S1): 242-248+260 .
    17. 马文勇,汪冠亚,郑熙,陈铁,李智,张程远,方平治. 端部状态对斜置圆柱气动力分布的影响. 实验流体力学. 2019(02): 43-50 . 本站查看
    31. 杨群,刘庆宽,孙亚松,刘小兵. 圆角方形断面气动特性试验. 振动.测试与诊断. 2020(01): 140-147+208 .

    Other cited types(16)

Catalog

    Article Metrics

    Article views (355) PDF downloads (14) Cited by(34)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close