Li Xingwei, Li Cong, Xu Chuanbao, Li Shengwen. Experimental research on the coupling effect of propeller slipstream and flat tail deep stall on aerodynamic characteristics of airplane[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1): 84-89. DOI: 10.11729/syltlx20170068
Citation: Li Xingwei, Li Cong, Xu Chuanbao, Li Shengwen. Experimental research on the coupling effect of propeller slipstream and flat tail deep stall on aerodynamic characteristics of airplane[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1): 84-89. DOI: 10.11729/syltlx20170068

Experimental research on the coupling effect of propeller slipstream and flat tail deep stall on aerodynamic characteristics of airplane

More Information
  • Received Date: May 19, 2017
  • Revised Date: June 13, 2017
  • The influence of propeller slipstream on aerodynamic characteristics of conventional layout turboprop aircraft is studied at large attack angle by using propeller aircraft dynamic simulation test. The dynamic simulation test is curried out in FL-9 wind tunnel of Aerodynamics Research Institute of AVIC. The propeller is driven by servo motor. The test angle of attack range is 0°~50°, and the wind speed range is 30~50m/s. The conventional single strut is used at the normal attack angle test, while the special prebending strut is used at the large attack angle test. The coupling effect of flat tail deep install and propeller slipstream is studied detailedly. The test results show that the propeller slipstream increases lift and drag forces of the test model, and decreases the longitudinal static stability, and these features also exist at large attack angel test. In addition, the slipstream will make the deep stall effect of flat tail worse, and the flat tail will be harder to get out of stall when the flat tail entering the coupling influence area of slipstream and wing wash flow at the large angle test condition. That means the range of attack angle effected by deep stall will be larger and flat tail deep stall effect is aggravated.
  • [1]
    Stuermer A W. Validation of an unstructured chimera grid approach for the simulation of propeller flows[R]. AIAA-2004-5289: 111-117.
    [2]
    杨小川, 王运涛, 王光学.螺旋桨非定常滑流的高效数值模拟研究[J].空气动力学学报, 2014, 32(3):290-294. http://www.cnki.com.cn/Article/CJFDTotal-KQDX201403003.htm

    Yang X C, Wang Y T, Wang G X. High efficiency numerical simulation of unsteady propeller slipstream[J]. Acta Aerodynamica Sinica, 2014, 32(3):290-294. http://www.cnki.com.cn/Article/CJFDTotal-KQDX201403003.htm
    [3]
    范洁川.风洞试验手册[M].北京:航空工业出版社, 2002:369-381.

    Fan J C. Wind tunnel test references[M]. Beijing:Aerodynamic Industry Publishing Company, 2006:27-46.
    [4]
    王刚, 叶正寅, 许和勇. T型尾翼民机深失速气动特性的计算研究[J].航空计算技术, 2008, 38(1):18-23. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hkjj200801007&dbname=CJFD&dbcode=CJFQ

    Wang G, Ye Z Y, Xu H Y. Numerical research on aerodynamic characters T-tail civil transport in deep stalling[J]. Journal of Aerospace Calculation, 2008, 38(1):18-23. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hkjj200801007&dbname=CJFD&dbcode=CJFQ
    [5]
    许和勇, 叶正寅.螺旋桨非定常滑流数值模拟[J].航空动力学报, 2011, 26(1):148-153. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hkdi201101023&dbname=CJFD&dbcode=CJFQ

    Xu H Y, Ye Z Y. Numerical simulation of unsteady propeller slipstream[J]. Journal of Aerospace Power, 2011, 26(1):148-153. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hkdi201101023&dbname=CJFD&dbcode=CJFQ
    [6]
    Feng J. Computational analyses for an advanced propeller powered theater transport[R]. AIAA-2003-4081: 61-68. https://www.sciencedirect.com/science/article/pii/S0022460X07007894
    [7]
    Philipsen I, Hegen S. Advances in propeller simulation testing at the german-dutch wind tunnels (DNW)[R]. AIAA-2004-2502: 101-132.
    [8]
    Aschwanden M. Wind tunnel simulation of propeller effects in the A400M FLA-4 Model[R]. AIAA-2005-3706: 8-22
    [9]
    Eric W M. Roosenboom and arne stürmer, comparison of piv measurements with unsteady RANS cal-culations in a propeller slipstream[R]. AIAA-2009-3626: 81-87.
    [10]
    刘沛清.空气螺旋桨理论及其应用[M].北京:北京航空航天大学出版社, 2006:27-56.

    Liu P Q. Research on air propeller theory and its application[M]. Beijing:BUAA Publishing Company, 2006:27-46.
    [11]
    Cao Y H, Zhao M. Numerical simulation of rotor flow elds based on several spatiafi discretization schemes[J]. Journal of Aircraft, 2012, 49(5):2590-2600. https://www.researchgate.net/profile/Yihua_Cao/publication/257440151_Numerical_Simulation_of_Rotor_Flow_Field_Based_on_Overset_Grids_and_Several_Spatial_and_Temporal_Discretization_Schemes/links/02e7e528ab28d63ef9000000.pdf
    [12]
    Wu X H, Hickey J P. Visualization of continuous stream of grid turbulence pastthe langston turbine cascade[J]. AIAA Journal, 2012, 50(1):2010-2123. https://www.researchgate.net/publication/252446945_Migration_of_a_turbulent_patch_through_a_high-pressure_turbine_cascade
    [13]
    Yin J P, Stuermer A. Aerodynamic and aeroacoustic analysis of installed pusher-propeller aircraft con gurationsfi[J]. Journal of Aircraft, 2012, 49(5):117-119. http://www.doc88.com/p-3117469926522.html
  • Cited by

    Periodical cited type(2)

    1. 李杰,杨钊,段卓毅,张恒,赵帅. 涡桨飞机发展现状及关键气动问题. 航空学报. 2019(04): 76-86 .
    2. 陈波,缪涛,马率,耿建中,江雄. 螺旋桨飞机俯仰力矩特性改进方法. 航空学报. 2019(04): 99-110 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (388) PDF downloads (15) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close