ZHAO Y J, XIAO J B, LIU J H, et al. Mode characteristics of transition flow in the boundary layer of the revolved body under wire spoiler disturbances[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(2): 59-67. DOI: 10.11729/syltlx20230108
Citation: ZHAO Y J, XIAO J B, LIU J H, et al. Mode characteristics of transition flow in the boundary layer of the revolved body under wire spoiler disturbances[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(2): 59-67. DOI: 10.11729/syltlx20230108

Mode characteristics of transition flow in the boundary layer of the revolved body under wire spoiler disturbances

More Information
  • Received Date: August 20, 2023
  • Revised Date: January 30, 2024
  • Accepted Date: February 10, 2024
  • The boundary layer transition of underwater vehicles produces strong noise, which seriously affects the communication and detection performance. In order to explore the main flow structures that induce the flow noise, a SUBOFF model is used as the research object, and the experiment and the large eddy simulation method are used to obtain the boundary layer flow field of the underwater revolved body under wire spoiler disturbances. The flow in the boundary layer first forms a separation bubble downstream of the wire spoiler, and a transition occurs in the posterior part of the separation bubble, which induces a large number of multi-scale unsteady vortices. Furthermore, based on the proper orthogonal decomposition method, the mode characteristics of the streamwise and normal velocity pulsation as well as the pressure pulsation in the boundary layer transition zone are studied. It is found that the dominant mode of the streamwise velocity pulsation is the separation bubble and its breakdown along the streamwise direction as well as streamwise vortex downstream. The streamwise direction pulsation in the separated bubble area has a composite frequency of < 3000 Hz, and in the downstream vortex region has a low-frequency structure of < 200 Hz. The mode characteristics of the normal velocity pulsation and pressure pulsation are similar. They are both high-frequency, broad-frequency modal structures with the greatest intensity near the separation bubble. It is inferred that the separation bubble and its breakdown are the main inducements of boundary layer transition, the induced normal velocity pulsation is the main source of high/broadband noise, and the streamwise velocity pulsation is only related to low frequency noise.

  • [1]
    WANG Y Q, GAO Y S, LIU C Q. Letter: Galilean invariance of rortex[J]. Physics of Fluids, 2018, 30(11): 111701. doi: 10.1063/1.5058939
    [2]
    ZHOU Z D, LI Z B, HE G W, et al. Towards multi-fidelity simulation of flows around an underwater vehicle with appendages and propeller[J]. Theoretical and Applied Mechanics Letters, 2022, 12(1): 100318. doi: 10.1016/j.taml.2021.100318
    [3]
    LING X, LEONG Z Q, CHIN C K H, et al. Free surface effect on the hydrodynamics of an underwater vehicle hullform, the darpa suboff[J]. International Journal of Maritime Engineering, 2022, 164(1): 41–54. doi: 10.5750/ijme.v164i1.732
    [4]
    LI X G, YANG K D, WANG Y. The power spectrum and correlation of flow noise for an axisymmetric body in water[J]. Chinese Physics B, 2011, 20(6): 064302. doi: 10.1088/1674-1056/20/6/064302
    [5]
    吕世金, 苗金林, 张晓伟. 水下高速航行体艏部水动力自噪声预报方法及低噪声线型设计[J]. 水动力学研究与进展A辑, 2012, 27(3): 303–310. DOI: 10.3969/j.issn1000-4874.2012.03.008

    LÜ S J, MIAO J L, ZHANG X W. Prediction method of hydrodynamic self-noise and design of low noise bow profile for underwater high speed vehicle[J]. Chinese Journal of Hydrodynamics, 2012, 27(3): 303–310. doi: 10.3969/j.issn1000-4874.2012.03.008
    [6]
    刘竟成, 褚学森, 张永明. 水下回转体首部曲面边界层自然转捩的数值研究[C]// 中国力学大会–2021 + 1论文集(第四册). 2022: 690-718. doi: 10.26914/c.cnkihy.2022.073263
    [7]
    吕世金, 高岩, 刘进, 等. 水下航行体表面湍流脉动压力波数-频率谱测试应用分析[J]. 中国舰船研究, 2020, 15(S1): 55–60. DOI: 10.19693/j.issn.1673-3185.01581

    LÜ S J, GAO Y, LIU J, et al. Application analysis on the wavenumber-frequency spectrum of pressure excited by a turbulent boundary layer on the wall of an underwater test vehicle[J]. Chinese Journal of Ship Research, 2020, 15(S1): 55–60. doi: 10.19693/j.issn.1673-3185.01581
    [8]
    刘瑶瑶, 潘翀, 郭辉, 等. 水下回转体转捩特性低速水洞实验研究[C]// 第十六届全国水动力学学术会议暨第三十二届全国水动力学研讨会论文集(上册). 2021: 642-644.
    [9]
    YANG C, LOHNER R. Prediction of flows over an axisymmetric body with appendages[C]// The 8th International Conference on Numerical Ship Hydrodynamics. 2003.
    [10]
    QU Y, WU Q, ZHAO X, et al. Numerical investigation of flow structures around the DARPA SUBOFF model[J]. Ocean Engineering, 2021, 239: 109866. doi: 10.1016/j.oceaneng.2021.109866
    [11]
    LUMLEY J L. The structure of inhomogeneous turbulent flows[C]// Atmospheric Turbulence and Radio Wave Propagation. 1967.
    [12]
    SCHMID P J. Dynamic mode decomposition of numerical and experimental data[J]. Journal of Fluid Mechanics, 2010, 656: 5–28. doi: 10.1017/s0022112010001217
    [13]
    ROWLEY C W, MEZIĆ I, BAGHERI S, et al. Spectral analysis of nonlinear flows[J]. Journal of Fluid Mechanics, 2009, 641: 115–127. doi: 10.1017/s0022112009992059
    [14]
    LIANG Y C, LEE H P, LIM S P, et al. Proper orthogonal decomposition and its applications — part I: theory[J]. Journal of Sound and Vibration, 2002, 252(3): 527–544. doi: 10.1006/jsvi.2001.4041
    [15]
    LIBERZON A, GURKA R, HETSRONI G. Comparison between two and three-dimensional POD in a turbulent boundary layer using multi-plane stereoscopic PIV[J]. Journal of Physics: Conference Series, 2011, 318(2): 022010. doi: 10.1088/1742-6596/318/2/022010
    [16]
    VERDOYA J, DELLACASAGRANDE M, BARSI D, et al. Identification of free-stream and boundary layer correlating events in free-stream turbulence-induced transition[J]. Physics of Fluids, 2022, 34(1): 014109. doi: 10.1063/5.0079658
    [17]
    WU Y H. A study of energetic large-scale structures in turbulent boundary layer[J]. Physics of Fluids, 2014, 26(4): 045113. doi: 10.1063/1.4873199
    [18]
    HUANG T T, LIU H L, GROVES N C, et al. Measurements of flows over an axisymmetric body with various appendages in a wind tunnel: the darpa suboff experimental program[C]// Proceedings of the 19th Symposium on Naval Hydrodynamics. 1994.
    [19]
    LIU J C, LIU J H, ZHANG Y M. Influence of Reynolds number on the natural transition of boundary layers over underwater axisymmetric bodies[J]. Physics of Fluids, 2023, 35(4): 044107. doi: 10.1063/5.0143497
    [20]
    SIROVICH L. Turbulence and the dynamics of coherent structures part I : coherent structures. [J]. Quarterly of Applied Mathematics, 1987, 45: 561-571. doi: 10.1090/qam/910462
  • Related Articles

    [1]GAO Lihua, HUANG Longtai, FU Hao, WANG Kunlun, HUANG Yong. Wind tunnel test for aerodynamics of wing-in-ground craft flying near smooth/wavy surface[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(5): 68-74. DOI: 10.11729/syltlx20200077
    [2]LUO Changtong, HU Zongmin, LIU Yunfeng, JIANG Zonglin. Research progress on ground-to-flight correlation of aerodynamic force and heating data from hypersonic wind tunnels[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(3): 78-89. DOI: 10.11729/syltlx20200006
    [3]Miao Wenbo, Shi Ketian, Ou Dongbin, Cao Zhanwei, Ai Bangcheng. Analysis of surface recombination effect in arc-jet aero-heating test[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 20-24. DOI: 10.11729/syltlx20180177
    [4]Wang Guolin, Zhou Yinjia, Jin Hua, Meng Songhe. Study on the influence of catalytic effect on the aerothermal environment by the flow-heat transfer coupling numerical analysis[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 13-19. DOI: 10.11729/syltlx20180159
    [5]Wang Guolin, Meng Songhe, Jin Hua. The validity analysis of ground simulation test for non-ablative thermal protection materials[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 79-87. DOI: 10.11729/syltlx20180122
    [6]Li Xingwei, Li Cong, Xu Chuanbao, Li Shengwen. Experimental research on the coupling effect of propeller slipstream and flat tail deep stall on aerodynamic characteristics of airplane[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1): 84-89. DOI: 10.11729/syltlx20170068
    [7]Sun Chenghong, Dai chin. The influence of the tip sails shape on the wing aerodynamics in ground effect[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(6): 10-17. DOI: 10.11729/syltlx20160054
    [8]Fang Yue, Zhou Zhiyu, Zhang Lianhe. Study on prediction of ground effect test data[J]. Journal of Experiments in Fluid Mechanics, 2015, (1): 60-65. DOI: 10.11729/syltlx20130120
    [9]YANG Jiong, LIANG Jian, LI Zheng-chu. Key technical research on developing moving belt ground proximity[J]. Journal of Experiments in Fluid Mechanics, 2008, 22(4): 68-71. DOI: 10.3969/j.issn.1672-9897.2008.04.015
    [10]Chen Wei-fang, SHI Yu-zhong, WU Qi-feng. A law of similitude for ballistic target ground testing[J]. Journal of Experiments in Fluid Mechanics, 2001, 15(1): 22-25. DOI: 10.3969/j.issn.1672-9897.2001.01.004
  • Cited by

    Periodical cited type(5)

    1. 高郭池,张波,全敬泽,尹崇,丁丽,姜裕标. 正常类飞机自然结冰试飞适航审定技术. 航空学报. 2024(01): 195-216 .
    2. 陈磊,王榆淞,张军,孔冰娜,朱程香. 飞机气动除冰系统试验研究. 南京航空航天大学学报. 2024(02): 300-306 .
    3. 李伟斌,郝云权,王建涛,周铸,肖中云. 直升机旋翼结冰影响及防/除冰方法综述. 航空动力学报. 2023(02): 257-268 .
    4. 苏娜. 基于F-P腔形式的圆柱形声学共鸣腔自动化特征长度测量模型研究. 自动化与仪器仪表. 2023(04): 25-28 .
    5. 冉林,熊建军,赵照,何苗. 周期控制律电加热控制系统设计与应用. 电气传动. 2021(14): 57-61 .

    Other cited types(7)

Catalog

    Article Metrics

    Article views (669) PDF downloads (41) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close