MA W Y,MA C C,WANG C Y,et al. Wind tunnel experimental study on the wind load interference effect of solar panel arrays[J]. Journal of Experiments in Fluid Mechanics, 2021,35(4):19-25.. DOI: 10.11729/syltlx20200127
Citation: MA W Y,MA C C,WANG C Y,et al. Wind tunnel experimental study on the wind load interference effect of solar panel arrays[J]. Journal of Experiments in Fluid Mechanics, 2021,35(4):19-25.. DOI: 10.11729/syltlx20200127

Wind tunnel experimental study on the wind load interference effect of solar panel arrays

More Information
  • Received Date: October 16, 2020
  • Revised Date: December 20, 2020
  • Available Online: August 25, 2021
  • Wind load is one of the main concerns in the design of the solar panel. The wind-induced interference effect is significant in the solar panel array, which needs further investigation. Pressures on the rigid solar panel models were measured in a wind tunnel to study the interference effect of solar panels on their pressure coefficients. By changing the inclination angle, wind direction and the number of solar panels, the interference effect on the wind load on the panels is studied. The results show that the most unfavorable wind load occurs when the panel is orientated to the wind. The upstream panels obviously shield the downstream ones and reduce their wind load. This shielding effect becomes more significant with the increase of the inclination angle. The wind load on the downstream panel tends to be constant when it locates downstream three or more panel rows. Based on the above interference effect, the pressure coefficients on the solar panel arrays are recommended and compared with those in standards, which provides a reference for the wind-resistant design of the solar panel supporting system.
  • [1]
    光伏支架结构设计规程: NB/T 10115-2018[S]. 北京: 中国计划出版社, 2018.

    Code for design of photovoltaic modules support structures: NB/T 10115-2018[S]. Beijing: China Planning Press, 2018.
    [2]
    张庆祝,刘志璋,齐晓慧,等. 太阳能光伏板风载的载荷分析[J]. 能源技术,2010,31(2):93-95.

    ZHANG Q Z,LIU Z Z,QI X H,et al. Solar photovoltaic panels wind load testing and analysis[J]. Energy Technology,2010,31(2):93-95.
    [3]
    何惧,朱锐,王建勃. 光伏电池板风荷载数值模拟计算[J]. 太阳能,2013(16):56-58. DOI: 10.3969/j.issn.1003-0417.2013.16.018

    HE J,ZHU R,WANG J B. Numerical simulation of wind load of photovoltaic panels[J]. Solar Energy,2013(16):56-58. doi: 10.3969/j.issn.1003-0417.2013.16.018
    [4]
    AGARWAL A,IRTAZA H,ZAMEEL A. Numerical study of lift and drag coefficients on a ground-mounted photo-voltaic solar panel[J]. Materials Today: Proceedings,2017,4(9):9822-9827. doi: 10.1016/j.matpr.2017.06.274
    [5]
    SHADEMAN M,BALACHANDAR R,BARRON R M. Detached eddy simulation of flow past an isolated inclined solar panel[J]. Journal of Fluids and Structures,2014,50:217-230. doi: 10.1016/j.jfluidstructs.2014.06.024
    [6]
    马文勇,孙高健,刘小兵,等. 太阳能光伏板风荷载分布模型试验研究[J]. 振动与冲击,2017,36(7):8-13. DOI: 10.13465/j.cnki.Jvs.2017.07.002

    MA W Y,SUN G J,LIU X B,et al. Tests for wind load distribution model of solar panels[J]. Journal of Vibration and Shock,2017,36(7):8-13. doi: 10.13465/j.cnki.Jvs.2017.07.002
    [7]
    马文勇,柴晓兵,刘庆宽,等. 底部阻塞对太阳能光伏板风荷载的影响研究[J]. 建筑结构,2019,49(2):129-134.

    MA W Y,CHAI X B,LIU Q K,et al. Study on effect of bottom flow obstruction on wind load of solar photovoltaic panels[J]. Building Structure,2019,49(2):129-134.
    [8]
    李寿科,李寿英,陈政清. 太阳电池板风荷载试验研究[J]. 太阳能学报,2015,36(8):1884-1889. DOI: 10.3969/j.issn.0254-0096.2015.08.015

    LI S K,LI S Y,CHEN Z Q. Experimental investigation of wind loading of solar panels[J]. Acta Energiae Solaris Sinica,2015,36(8):1884-1889. doi: 10.3969/j.issn.0254-0096.2015.08.015
    [9]
    JUBAYER C M,HANGAN H. Numerical simulation of wind effects on a stand-alone ground mounted photovoltaic (PV) system[J]. Journal of Wind Engineering and Industrial Aerodynamics,2014,134:56-64. doi: 10.1016/j.jweia.2014.08.008
    [10]
    高亮,窦珍珍,白桦,等. 光伏组件风荷载影响因素分析[J]. 太阳能学报,2016,37(8):1931-1937. DOI: 10.3969/j.issn.0254-0096.2016.08.005

    GAO L,DOU Z Z,BAI H,et al. Analysis of influence factors for wind lode of pv module[J]. Acta Energiae Solaris Sinica,2016,37(8):1931-1937. doi: 10.3969/j.issn.0254-0096.2016.08.005
    [11]
    江继波,章正暘,陆元明,等. 考虑弯矩的光伏阵列风荷载数值分析[J]. 可再生能源,2019,37(1):46-52. DOI: 10.13941/j.cnki.21-1469/tk.2019.01.008

    JIANG J B,ZHANG Z Y,LU Y M,et al. Numerical analysis of wind loads about photovoltaic arrays considering bending moment[J]. Renewable Energy Resources,2019,37(1):46-52. doi: 10.13941/j.cnki.21-1469/tk.2019.01.008
    [12]
    JUBAYER C M,HANGAN H. A numerical approach to the investigation of wind loading on an array of ground mounted solar photovoltaic (PV) panels[J]. Journal of Wind Engineering and Industrial Aerodynamics,2016,153:60-70. doi: 10.1016/j.jweia.2016.03.009
    [13]
    WARSIDO W P,BITSUAMLAK G T,BARATA J,et al. Influence of spacing parameters on the wind loading of solar array[J]. Journal of Fluids and Structures,2014,48:295-315. doi: 10.1016/j.jfluidstructs.2014.03.005
    [14]
    中华人民共和国住房和城乡建设部. 中华人民共和国国家标准: 建筑结构荷载规范 GB 50009—2012[S]. 北京: 中国建筑工业出版社, 2012.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. National Standard (Mandatory) of the People's Republic of China: Load code for the design of building structures. GB 50009—2012[S]. Beijing: China Architecture & Building Press, 2012.
    [15]
    韩晓乐. 太阳能光伏阵列风荷载取值研究[D]. 石家庄: 石家庄铁道大学, 2016.

    HAN X L. Study on wind load of solar photovoltaic array[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2016.
    [16]
    Minimum Design Loads for Buildings and Other Structures: ASCE Standard ASCE/SEI 7-10[S]. Virginia: American Society of Civil Engineers, 2010.
    [17]
    Structural Design Actions: Australian/New Zealand Standard AS/NZS 1170[S]. Wellington: Standards Australia International Ltd, 2002.
  • Related Articles

    [1]DU Baihe, ZHANG Songhe, GE Qiang, WANG Maogang. Study on flow field characteristics of inert gas-air hybrid arc[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(5): 69-75. DOI: 10.11729/syltlx20210052
    [2]ZHANG Xinghuan, ZHANG Pingtao, PENG Bo, YI Xian. Prediction of icing wind tunnel temperature field with machine learning[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(5): 8-15. DOI: 10.11729/syltlx20210196
    [3]Fu Cheng, Zhao Bo, Xu Dachuan, Liao Daxiong, Pei Haitao, Zhu Bo, Qin Honggang. Investigation on flow turbulent characteristics of plate-fin and tube-fin heat exchanger[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(6): 22-27. DOI: 10.11729/syltlx20190036
    [4]Wang Feng, Xu Jinglei, Wang Yangsheng. Study of flow field characteristics of an over-under TBCC exhaust system during mode transition process[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 68-75. DOI: 10.11729/syltlx20190037
    [5]Gong Jishuang, Zhou Lin, Zhang Yining, Teng Honghui. Investigation on flow field structure of rotating detonation using the method of characteristics[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(1): 89-96. DOI: 10.11729/syltlx20180072
    [6]Liao Daxiong, Chen Jiming, Zheng Juan, Chen Qin, Pei Haitao, Wu Shenghao. General performance of 0.6m continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 88-93. DOI: 10.11729/syltlx20170086
    [7]Yang Hong, Luo Yue, Wu Dong, Zhou Ping. Study on supersonic turbulence plate ablation flow field in arc heater[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(4): 72-77. DOI: 10.11729/syltlx20170181
    [8]Yu Mingxing, Bai Shuxin, Xu Xiaoliang, Cao Zhanwei. Research on method for evaluating the thermal protective performance of non-catalysis material in non-equilibrium flow[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4): 84-89. DOI: 10.11729/syltlx20170084
    [9]Luo Yue, Zhou Wei, Yang Hong, Chen Wei. CFD analysis of the arc heater turbulent flow field of flat plate testing[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 86-92. DOI: 10.11729/syltlx20160088
    [10]Yang Bo, Liu Sen. Investigation of the performance of flow field in supersonic/hypersonic wind tunnel with different test section geometry configurations[J]. Journal of Experiments in Fluid Mechanics, 2014, (4): 59-64. DOI: 10.11729/syltlx20130023
  • Cited by

    Periodical cited type(18)

    1. 韩笑,高创,郑怡彤,刘小兵. 切角凹槽矩形截面桥塔的气动特性试验研究. 石家庄铁道大学学报(自然科学版). 2024(01): 9-15+23 .
    2. 白桦,刘博祥,姬乃川,李加武. 节段模型二元端板合理尺寸估算方法. 振动与冲击. 2023(02): 312-320 .
    3. 王仰雪,刘庆宽,靖洪淼,李震,孙一飞. 倾斜栏杆对流线型箱梁涡激振动性能影响的试验研究. 振动与冲击. 2023(06): 232-239+254 .
    4. 于畅,仇法梅,田学东,杨群,刘小兵. 圆角矩形柱平均气动力特性的雷诺数效应试验研究. 石家庄铁道大学学报(自然科学版). 2023(02): 29-34 .
    5. 杨群,于畅,刘小兵,刘庆宽. 不同圆角率的方形断面斯特罗哈数的雷诺数效应研究. 振动与冲击. 2023(11): 223-231 .
    6. 刘庆宽,王仰雪,孙一飞,李震,韩原,靖洪淼. 栏杆高度对流线型箱梁涡振性能影响的试验研究. 湖南大学学报(自然科学版). 2023(07): 140-150 .
    7. 刘路路,杨皓然,邹云峰,何旭辉,韩艳,陈志强. 公铁同层双幅非对称主梁气动干扰特性研究. 铁道科学与工程学报. 2023(10): 3861-3872 .
    8. 杨群,于畅,于文文,刘小兵. 圆角方柱气动特性的风洞试验研究. 振动与冲击. 2023(24): 59-68 .
    9. 韩振,李波,甄伟,杨庆山,田玉基. 宽厚比为5的超高层建筑风荷载特性研究. 哈尔滨工程大学学报. 2022(02): 196-202 .
    10. 张庆华,马文勇,杨杰,张彦,周帅伟. 不同风倾角下典型等边角钢静风力风洞试验研究. 振动工程学报. 2022(02): 277-283 .
    11. 白桦,王涵,姬乃川,李加武. 节段模型长宽比对风洞测力试验及计算分析的影响. 中国公路学报. 2022(08): 202-212 .
    12. 杨群,刘庆宽,韩瑞,刘小兵. 不同圆角率的方形断面气动特性的雷诺数效应. 振动与冲击. 2020(04): 150-156 .
    13. 沈国辉,姚剑锋,郭勇,邢月龙,楼文娟. 直径30 cm圆柱的气动力参数和绕流特性研究. 振动与冲击. 2020(06): 22-28 .
    14. 温青,池俊豪,华旭刚,王修勇,孙洪鑫. 端部条件和展弦比对矩形断面节段模型气动力特征的影响. 实验流体力学. 2020(04): 36-43 . 本站查看
    15. 任若松,梁新华,刘小兵,马文勇,刘庆宽. 准流线型桥梁断面气动力特性的雷诺数效应研究. 工程力学. 2020(S1): 139-144+167 .
    16. 李海飞,梁新华,孙一飞,崔会敏,刘庆宽. 流线型桥梁断面表面脉动风荷载特性研究. 工程力学. 2020(S1): 242-248+260 .
    17. 马文勇,汪冠亚,郑熙,陈铁,李智,张程远,方平治. 端部状态对斜置圆柱气动力分布的影响. 实验流体力学. 2019(02): 43-50 . 本站查看
    31. 杨群,刘庆宽,孙亚松,刘小兵. 圆角方形断面气动特性试验. 振动.测试与诊断. 2020(01): 140-147+208 .

    Other cited types(16)

Catalog

    Article Metrics

    Article views (777) PDF downloads (97) Cited by(34)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close