Citation: | TANG J P, HE J, WANG X, et al. A concise method of determining critical flutter wind speeds for small damping modes[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(6): 101-105. DOI: 10.11729/syltlx20210071 |
[1] |
俱利锋, 梁坤鹏, 梁海州, 等. 颤振边界预测技术在颤振试飞中的应用研究[J]. 飞行力学, 2010, 28(5): 79–83. DOI: 10.13645/j.cnki.f.d.2010.05.015
JU L F, LIANG K P, LIANG H Z, et al. Application to flut-ter boundary prediction in flight test[J]. Flight Dynamics, 2010, 28(5): 79–83. doi: 10.13645/j.cnki.f.d.2010.05.015
|
[2] |
谭冬梅, 姚三, 瞿伟廉. 振动模态的参数识别综述[J]. 华中科技大学学报(城市科学版), 2002, 19(3): 73–78.
TAN D M, YAO S, QU W L. State of modal parameter identification[J]. Journal of Huazhong University of Science and Technology (Urban Science Edition), 2002, 19(3): 73–78.
|
[3] |
王卫华. 模态参数识别方法及应用研究[D]. 长沙: 国防科学技术大学, 2007.
WANG W H. Investigation on the modal parameters identifi-cation method and its application[D]. Changsha: National University of Defense Technology, 2007.
|
[4] |
陈为真. 大型结构振动信号处理与模态参数识别研究[D]. 武汉: 华中科技大学, 2010.
CHEN W Z. Large structural systems with vibration signal processing and modal parameter identification research[D]. Wuhan: Huazhong University of Science and Technology, 2010.
|
[5] |
张伟伟, 于俊杰, 全景阁, 等. 一种基于亚临界响应的颤振边界预测新方法[J]. 航空工程进展, 2012, 3(4): 390–396. DOI: 10.16615/j.cnki.1674-8190.2012.04.007
ZHANG W W, YU J J, QUAN J G, et al. A new flutter prediction method based on a structural response at sub-critical speed[J]. Advances in Aeronautical Science and Engineering, 2012, 3(4): 390–396. doi: 10.16615/j.cnki.1674-8190.2012.04.007
|
[6] |
伍波, 王骑, 李志国, 等. 颤振临界风速计算值与试验值的一致性[J]. 西南交通大学学报, 2018, 53(3): 517–524. DOI: 10.3969/j.issn.0258-2724.2018.03.012
WU B, WANG Q, LI Z G, et al. Consistency between calculated and tested values of critical flutter speed of flat box girder[J]. Journal of Southwest Jiaotong University, 2018, 53(3): 517–524. doi: 10.3969/j.issn.0258-2724.2018.03.012
|
[7] |
许福友, 陈艾荣, 张哲, 等. 确定桥梁模型颤振临界风速的实用方法[J]. 振动与冲击, 2008, 27(12): 97–100, 111, 182. DOI: 10.13465/j.cnki.jvs.2008.12.018
XU F Y, CHEN A R, ZHANG Z, et al. Practical technique for determining critical flutter wind speed of bridge model[J]. Journal of Vibration and Shock, 2008, 27(12): 97–100, 111, 182. doi: 10.13465/j.cnki.jvs.2008.12.018
|
[8] |
聂建华, 司伟. 一种基于振动信号处理的颤振预报方案研究[J]. 工业仪表与自动化装置, 2009(4): 57–59, 71. DOI: 10.3969/j.issn.1000-0682.2009.04.016
NIE J H, SI W. The method for prediction of chatter based onthe vibration signal processing[J]. Industrial Instrumentation& Automation, 2009(4): 57–59, 71. doi: 10.3969/j.issn.1000-0682.2009.04.016
|
[9] |
盖相宇. 大跨径悬索桥软颤振临界风速确定方法[D]. 西安: 长安大学, 2019.
GAI X Y. Method for determining the critical wind speed of long-span suspension bridges under post flutter[D]. Xi'an: Chang'an University, 2019.
|
[10] |
牟让科, 杨永年. 飞机抖振问题研究进展[J]. 应用力学学报, 2001, 18(S1): 142–150.
MU R K, YANG Y N. Advances of studies for the buffet pro-blem of aircraft[J]. Chinese Journal of Applied Mechanics, 2001, 18(S1): 142–150.
|
[11] |
陈德成, 姜节胜. 随机减量技术的方法与理论[J]. 振动与冲击, 1984, 3(4): 31–40. DOI: 10.13465/j.cnki.jvs.1984.04.004
CHEN D C, JIANG J S. Method and theory of random decrement technique[J]. Journal of Vibration and Shock, 1984, 3(4): 31–40. doi: 10.13465/j.cnki.jvs.1984.04.004
|
[12] |
聂雪媛, 丁桦. 基于随机减量技术的模态参数识别方法探讨[J]. 机械设计, 2012, 29(8): 1–5. DOI: 10.13841/j.cnki.jxsj.2012.08.015
NIE X Y, DING H. Discussion on modal parameter identifi-cation method based on random decrement technique[J]. Journal of Machine Design, 2012, 29(8): 1–5. doi: 10.13841/j.cnki.jxsj.2012.08.015
|
[1] | GAO Lihua, HUANG Longtai, FU Hao, WANG Kunlun, HUANG Yong. Wind tunnel test for aerodynamics of wing-in-ground craft flying near smooth/wavy surface[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(5): 68-74. DOI: 10.11729/syltlx20200077 |
[2] | LUO Changtong, HU Zongmin, LIU Yunfeng, JIANG Zonglin. Research progress on ground-to-flight correlation of aerodynamic force and heating data from hypersonic wind tunnels[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(3): 78-89. DOI: 10.11729/syltlx20200006 |
[3] | Miao Wenbo, Shi Ketian, Ou Dongbin, Cao Zhanwei, Ai Bangcheng. Analysis of surface recombination effect in arc-jet aero-heating test[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 20-24. DOI: 10.11729/syltlx20180177 |
[4] | Wang Guolin, Zhou Yinjia, Jin Hua, Meng Songhe. Study on the influence of catalytic effect on the aerothermal environment by the flow-heat transfer coupling numerical analysis[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 13-19. DOI: 10.11729/syltlx20180159 |
[5] | Wang Guolin, Meng Songhe, Jin Hua. The validity analysis of ground simulation test for non-ablative thermal protection materials[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 79-87. DOI: 10.11729/syltlx20180122 |
[6] | Li Xingwei, Li Cong, Xu Chuanbao, Li Shengwen. Experimental research on the coupling effect of propeller slipstream and flat tail deep stall on aerodynamic characteristics of airplane[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1): 84-89. DOI: 10.11729/syltlx20170068 |
[7] | Sun Chenghong, Dai chin. The influence of the tip sails shape on the wing aerodynamics in ground effect[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(6): 10-17. DOI: 10.11729/syltlx20160054 |
[8] | Fang Yue, Zhou Zhiyu, Zhang Lianhe. Study on prediction of ground effect test data[J]. Journal of Experiments in Fluid Mechanics, 2015, (1): 60-65. DOI: 10.11729/syltlx20130120 |
[9] | YANG Jiong, LIANG Jian, LI Zheng-chu. Key technical research on developing moving belt ground proximity[J]. Journal of Experiments in Fluid Mechanics, 2008, 22(4): 68-71. DOI: 10.3969/j.issn.1672-9897.2008.04.015 |
[10] | Chen Wei-fang, SHI Yu-zhong, WU Qi-feng. A law of similitude for ballistic target ground testing[J]. Journal of Experiments in Fluid Mechanics, 2001, 15(1): 22-25. DOI: 10.3969/j.issn.1672-9897.2001.01.004 |