Citation: | CHEN Zhengyun, ZHANG Qingfu, PAN Chong, LIU Yanpeng, CAI Chujiang. An experimental study on drag reduction of superhydrophobic rotating disk with air plastron[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(3): 52-59. DOI: 10.11729/syltlx20200025 |
[1] |
BULLEE P A, VERSCHOOF R A, BAKHUIS D, et al. Bubbly drag reduction using a hydrophobic inner cylinder in Taylor-Couette turbulence[J]. Journal of Fluid Mechanics, 2020, 883: A61. doi: 10.1017/jfm.2019.894
|
[2] |
HU H B, WEN J, BAO L Y, et al. Significant and stable drag reduction with air rings confined by alternated superhydrophobic and hydrophilic strips[J]. Science Advances, 2017, 3(9): e1603288. doi: 10.1126/sciadv.1603288
|
[3] |
莫梦婷, 赵文杰, 陈子飞, 等. 海洋减阻技术的研究现状[J]. 摩擦学学报, 2015, 35(4): 505-515. DOI: 10.16078/j.tribology.2015.04.020
MO M T, ZHAO W J, CHEN Z F, et al. Research status of marine drag reduction technologies[J]. Tribology, 2015, 35(4): 505-515. doi: 10.16078/j.tribology.2015.04.020
|
[4] |
李山, 杨绍琼, 姜楠. 沟槽面湍流边界层减阻的TRPIV测量[J]. 力学学报, 2013, 45(2): 183-192. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201302007.htm
LI S, YANG S Q, JIANG N. Trpiv measurement of drag-reduction in the turbulent boundary layer over riblets plate[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(2): 183-192. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201302007.htm
|
[5] |
王鑫, 李山, 唐湛棋, 等. 沟槽对湍流边界层中展向涡影响的实验研究[J]. 实验流体力学, 2018, 32(1): 55-63. DOI: 10.11729/syltlx20170092
WANG X, LI S, TANG Z Q, et al. An experimental study on riblet-induced spanwise vortices in turbulent boundary layers[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1): 55-63. doi: 10.11729/syltlx20170092
|
[6] |
黄桥高, 潘光, 胡海豹, 等. 脊状表面航行器模型减阻特性的水洞实验研究[J]. 实验流体力学, 2010, 24(3): 50-53. DOI: 10.11729/syltlx20180035
HUANG Q G, PAN G, HU H B, et al. Investigation about drag reduction characteristic of iblets surface on vehicle model in water tunnel[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(3): 50-53. doi: 10.11729/syltlx20180035
|
[7] |
BURNISHEV Y, STEINBERG V. Influence of polymer additives on turbulence in von Karman swirling flow between two disks. II[J]. Physics of Fluids, 2016, 28(3): 033101. doi: 10.1063/1.4942401
|
[8] |
朱波, 赵文斌, 李明义, 等. 黄原胶盐溶液减阻及抗剪切特性的实验研究[J]. 实验流体力学, 2018, 32(5): 61-66. http://www.syltlx.com/CN/abstract/abstract11145.shtml
ZHU B, ZHAO W B, LI M Y, et al. Experimental study on drag reduction and anti-shearing characteristics of xanthan gum solution with NaCl[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(5): 61-66. doi: 1672-9897(2010)03-0050-04
|
[9] |
胡海豹, 宋保维, 黄桥高, 等. 水下湍流减阻途径分析[J]. 摩擦学学报, 2010, 30(6): 620-629. DOI: 10.16078/j.tribology.2010.06.007
HU H B, SONG B W, HUANG Q G, et al. Analysis about the approaches of underwater turbulence drag reduction[J]. Tribology, 2010, 30(6): 620-629. doi: 10.16078/j.tribology.2010.06.007
|
[10] |
LEE C, CHOI C H, KIM C J. Superhydrophobic drag reduction in laminar flows: a critical review[J]. Experiments in Fluids, 2016, 57(12): 1-20. doi: 10.1007/s00348-016-2264-z
|
[11] |
ROTHSTEIN J P. Slip on superhydrophobic surfaces[J]. Annual Review of Fluid Mechanics, 2010, 42(1): 89-109. doi: 10.1146/annurev-fluid-121108-145558
|
[12] |
王新亮, 狄勤丰, 张任良, 等. 超疏水表面滑移理论及其减阻应用研究进展[J]. 力学进展, 2010, 40(3): 241-249. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201003002.htm
WANG X L, DI Q F, ZHANG R L, et al. Progress in theories of super-hydrophobic surface slip effect and its application to drag reduction technology[J]. Advances in Mechanics, 2010, 40(3): 241-249. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201003002.htm
|
[13] |
刘铁峰, 王鑫蔚, 唐湛棋, 等. 超疏水表面对湍流边界层相干结构影响的TRPIV实验研究[J]. 实验流体力学, 2019, 33(3): 90-96. DOI: 10.11729/syltlx20180101
LIU T F, WANG X W, TANG Z Q, et al. TRPIV experimental study of the effect of superhydrophobic surface on the coherent structure of turbulent boundary layer[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 90-96. doi: 10.11729/syltlx20180101
|
[14] |
POETES R, HOLTZMANN K, FRANZE K, et al. Metastable underwater superhydrophobicity[J]. Physical Review Letters, 2010, 105(16): 166104. doi: 10.1103/PhysRevLett.105.166104
|
[15] |
FORSBERG P, NIKOLAJEFF F, KARLSSON M. Cassie-Wenzel and Wenzel-Cassie transitions on immersed superhydrophobic surfaces under hydrostatic pressure[J]. Soft Matter, 2011, 7(1): 104-109. doi: 10.1039/c0sm00595a
|
[16] |
SAMAHA M A, VAHEDI TAFRESHI H, GAD-EL-HAK M. Sustainability of superhydrophobicity under pressure[J]. Physics of Fluids, 2012, 24(11): 112103. doi: 10.1063/1.4766200
|
[17] |
吕鹏宇, 薛亚辉, 段慧玲. 超疏水材料表面液-气界面的稳定性及演化规律[J]. 力学进展, 2016, 46(0): 179-225. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201600004.htm
LV P Y, XUE Y H, DUAN H L. Stability and evolution of liquid-gas interfaces on superhydrophobic surfaces[J]. Advances in Mechanics, 2016, 46(0): 179-225. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201600004.htm
|
[18] |
TRUESDELL R, MAMMOLI A, VOROBIEFF P, et al. Drag reduction on a patterned superhydrophobic surface[J]. Physical Review Letters, 2006, 97(4): 044504. doi: 10.1103/physrevlett.97.044504
|
[19] |
胡海豹, 王德政, 鲍路瑶, 等. 基于润湿阶跃的水下大尺度气膜封存方法[J]. 物理学报, 2016, 65(13): 201-207. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201613023.htm
HU H B, WANG D Z, BAO L Y, et al. Maintaining large-scale gas layer by creating wettability difference on surfaces under water[J]. Acta Physica Sinica, 2016, 65(13): 201-207. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201613023.htm
|
[20] |
王宝, 汪家道, 陈大融. 基于微空泡效应的疏水性展向微沟槽表面水下减阻研究[J]. 物理学报, 2014, 63(7): 214-220. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201407029.htm
WANG B, WANG J D, CHEN D R. Drag reduction on hydrophobic transverse grooved surface by underwater gas formed naturally[J]. Acta Physica Sinica, 2014, 63(7): 214-220. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201407029.htm
|
[21] |
郝鹏飞, 汪幸愉, 姚朝晖, 等. 疏水微槽道内层流减阻的实验研究[J]. 实验流体力学, 2009, 23(3): 7-11, 15. http://www.syltlx.com/CN/abstract/abstract9763.shtml
HAO P F, WANG X Y, YAO Z H, et al. Experimental study on laminar drag reduction in hydrophobic microchannels[J]. Journal of Experiments in Fluid Mechanics, 2009, 23(3): 7-11, 15. doi: 1672-9897(2009)03-0007-06
|
[22] |
CAI C J, SANG N N, TENG S C, et al. Superhydrophobic surface fabricated by spraying hydrophobic R974 nanoparticles and the drag reduction in water[J]. Surface and Coatings Technology, 2016, 307: 366-373. doi: 10.1016/j.surfcoat.2016.09.009
|
[23] |
DU P, WEN J, ZHANG Z Z, et al. Maintenance of air layer and drag reduction on superhydrophobic surface[J]. Ocean Engineering, 2017, 130: 328-335. doi: 10.1016/j.oceaneng.2016.11.028
|
[24] |
LEE C, KIM C J. Underwater restoration and retention of gases on superhydrophobic surfaces for drag reduction[J]. Physical Review Letters, 2011, 106(1): 014502. doi: 10.1103/physrevlett.106.014502
|
[25] |
LEE J, YONG K. Combining the lotus leaf effect with artificial photosynthesis: regeneration of underwater super hydrophobicity of hierarchical ZnO/Si surfaces by solar water splitting[J]. NPG Asia Materials, 2015, 7(7): e201. doi: 10.1038/am.2015.74
|
[26] |
冯家兴, 胡海豹, 卢丙举, 等. 超疏水沟槽表面通气减阻实验研究[J]. 力学学报, 2020, 52(1): 24-30. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202001003.htm
FENG J X, HU H B, LU B J, et al. Experimental study on drag reduction characteristics of superhydrophobic groove surfaces with ventilation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 24-30. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202001003.htm
|
[27] |
张梦卓, 胡海豹, 杜鹏, 等. 超疏水表面水下电解补气方法研究[J]. 实验流体力学, 2020, 34(1): 67-71. DOI: 10.11729/syltlx20190097
ZHANG M Z, HU H B, DU P, et al. Research on gas replenishment for submersed superhydrophobic surface by electrolysis[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 67-71. doi: 10.11729/syltlx20190097
|
[28] |
BRADY J F, DURLOFSKY L. On rotating disk flow[J]. Journal of Fluid Mechanics, 1987, 175: 363. doi: 10.1017/s0022112087000430
|
[29] |
BURNISHEV Y, STEINBERG V. Turbulence and turbulent drag reduction in swirling flow: Inertial versus viscous forcing[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2015, 92(2): 023001. doi: 10.1103/physreve.92.023001
|
[30] |
MOAVEN K, RAD M, TAEIBI-RAHNI M. Experimental investigation of viscous drag reduction of superhydrophobic nano-coating in laminar and turbulent flows[J]. Experimental Thermal and Fluid Science, 2013, 51: 239-243. doi: 10.1016/j.expthermflusci.2013.08.003
|
[31] |
MUKHERJEE A, LUKASCHUK S, BURNISHEV Y, et al. Precise measurements of torque in von Karman swirling flow driven by a bladed disk[J]. Journal of Turbulence, 2018, 19(8): 647-663. doi: 10.1080/14685248.2018.1494833
|
[32] |
MUKHERJEE A, STEINBERG V. Von Kármán swirling flow between a rotating and a stationary smooth disk: Experiment[J]. Physical Review Fluids, 2018, 3: 014102. doi: 10.1103/physrevfluids.3.014102
|
[33] |
CHOI W, BYEON H, PARK J Y, et al. Effects of pressure gradient on stability and drag reduction of superhydrophobic surfaces[J]. Applied Physics Letters, 2019, 114(10): 101603. doi: 10.1063/1.5085081
|
1. | 朱睿,何星宇,赵晨鸿,刘宇,张焕彬,陈腾飞,谭鑫,刘志荣. 驻留式微气泡阵列流动减阻机理数值研究. 浙江大学学报(工学版). 2024(05): 1040-1049 . | |
2. | 王封,张亿宝,郗恒东. 冯·卡门涡旋流动系统中各向异性的实验研究. 实验流体力学. 2024(04): 11-20 . 本站查看 | |
3. | 张奕,潘翀,窦建宇,张淼. 微型涡流发生器影响下的湍流边界层流场与摩阻特性. 实验流体力学. 2023(04): 48-58 . 本站查看 | |
4. | 张照,许晓慧,黄金艺,牟震林,苑伟政,何洋,吕湘连. 厘米尺度亲疏水间隔表面水下气膜维持效果及机理研究. 表面技术. 2023(12): 188-196 . |