Citation: | Chen Dan, Zhang Yongshuang, Li Gang, Guo Shouchun, Shen Mou. A design of total pressure control method for continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(6): 65-71. DOI: 10.11729/syltlx20180094 |
[1] |
高川, 周波, 蒋婧妍, 等.基于Labview的大型超声速风洞总压测控系统设计与应用[J].测控技术, 2014, 33(8): 84-87. DOI: 10.3969/j.issn.1000-8829.2014.08.022
Gao C, Zhou B, Jiang J Y, et al. Design and implementation of total pressure measurement and control system of large-scare supersonic wind tunnel based on Labview[J]. Measurement & Control Technology, 2014, 33(8): 84-87. DOI: 10.3969/j.issn.1000-8829.2014.08.022
|
[2] |
褚卫华, 汤更生, 王帆. 2m×2m超声速风洞流场控制策略研究与实现[J].实验流体力学, 2012, 26(5): 98-102. DOI: 10.3969/j.issn.1672-9897.2012.05.021
Chu W H, Tang G S, Wang F. Research and realization on the control strategies of the 2m×2m supersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(5): 98-102. DOI: 10.3969/j.issn.1672-9897.2012.05.021
|
[3] |
易家宁.风洞马赫数的控制策略与控制方法研究[D].沈阳: 东北大学, 2014.
Yi J N. Research on control strategy and control method of Mach number for wind tunnel[D]. Shenyang: Northeastern University, 2014.
|
[4] |
杨海滨, 张伟, 罗承友, 等.模糊控制在风洞主气流压力自动调节系统中的应用[J].兵工自动化, 2015, 34(4): 39-42. http://d.old.wanfangdata.com.cn/Periodical/bgzdh201504012
Yang H B, Zhang W, Luo C Y, et al. Application of fuzzy control in wind tunnel main airflow pressure auto-adjust system[J]. Ordnance Industry Automation, 2015, 34(4): 39-42. http://d.old.wanfangdata.com.cn/Periodical/bgzdh201504012
|
[5] |
王博文, 黄叙辉, 秦建华, 等.遗传算法在跨超声速风洞总压控制中的应用[J].计算机测量与控制, 2017, 25(11): 74-77. http://d.old.wanfangdata.com.cn/Periodical/jsjzdclykz201711019
Wang B W, Huang X H, Qin J H, et al. Application of genetic algorithms in total pressure control system of transonic and supersonic wind tunnel[J]. Computer Measurement and Control, 2017, 25(11): 74-77. http://d.old.wanfangdata.com.cn/Periodical/jsjzdclykz201711019
|
[6] |
Nguyen N, Ardema M. Adjoint method and predictive control for 1-D flow in NASA Ames 11-Foot Transonic Wind Tunnel[R]. AIAA 2006-1433, 2006.
|
[7] |
Chan D T, Balakrishna S, Walker E L, et al. Mach stability improvements using an existing second throat capability at the National Transonic Facility (Invited)[R]. AIAA 2015-0622, 2015.
|
[8] |
张永双, 陈旦, 陈娇. NF-6连续式跨声速风洞马赫数控制方式比较与研究[J].实验流体力学, 2013, 27(2): 95-99. DOI: 10.3969/j.issn.1672-9897.2013.02.019
Zhang Y S, Chen D, Chen J. Comparison and research on the Mach number control methods for the NF-6 continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(2): 95-99. DOI: 10.3969/j.issn.1672-9897.2013.02.019
|
[9] |
郝礼书, 乔志德, 张永双, 等. NF-6风洞马赫数闭环控制系统设计研究[J].实验流体力学, 2010, 24(4): 85-88. DOI: 10.3969/j.issn.1672-9897.2010.04.019
Hao L S, Qiao Z D, Zhang Y S, et al. Design research on the Mach number closed-loop control system in the NF-6 wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(4): 85-88. DOI: 10.3969/j.issn.1672-9897.2010.04.019
|
[10] |
田昊, 云长江, 彭毅.增量PID算法在某风洞压力控制中的应用改进[J].计算机测量与控制, 2016, 24(3): 64-66. http://d.old.wanfangdata.com.cn/Periodical/jsjzdclykz201603018
Tian H, Yun C J, Peng Y. Improving application of increment PID adjust method for pressure control in wind tunnel[J]. Computer Measurement and Control, 2016, 24(3): 64-66. http://d.old.wanfangdata.com.cn/Periodical/jsjzdclykz201603018
|
[11] |
Balakrishna S, Kilgore W A, Thibodeaux J J. Control of large cryogenic tunnels[R]. AIAA-92-3930, 1992.
|
[12] |
熊波, 周恩民, 程松, 等. 0. 6m连续式风洞调试运行关键技术研究[J].实验流体力学, 2016, 30(4): 81-86. http://d.old.wanfangdata.com.cn/Periodical/ltlxsyycl201604014
Xiong B, Zhou E M, Cheng S, et al. Research on key technologies of debugging and operating in 0.6 m×0.6 m continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(4): 81-86. http://d.old.wanfangdata.com.cn/Periodical/ltlxsyycl201604014
|
[13] |
Gobert J L. ETW control system: design and first results[R]. AIAA-94-2514, 1994.
|
[14] |
廖达雄, 陈吉明, 彭强, 等.连续式跨声速风洞设计关键技术[J].实验流体力学, 2011, 25(4): 74-78. DOI: 10.3969/j.issn.1672-9897.2011.04.014
Liao D X, Chen J M, Peng Q, et al. Key design techniques of the low noise continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(4): 74-78. DOI: 10.3969/j.issn.1672-9897.2011.04.014
|
[15] |
Paryz R W. Subsonic transonic Applied refinements By Using Key Strategies-STARBUKS in the NASA Langley Research Center National Transonic Facility[R]. AIAA 2014-1481, 2014.
|
[16] |
连晓飞.基于遗传算法优化BP网络的风洞马赫数控制研究[D].沈阳: 东北大学, 2011.
Lian X F. Wind tunnel Mach number control based on genetic algorithm optimized BP-Neural network[D]. Shenyang: Northeastern University, 2011.
|
[17] |
Schulz M, Quest J. New techniques for operation in cryogenic windtunnels[R]. AIAA 2007-749, 2007.
|
[18] |
Jackson F M. Progress update on the AEDC PWT sustainment program[R]. AIAA 2004-2500, 2004.
|
[19] |
黎壮声, 杨鹏程, 陈旦, 等. 0. 6m连续式跨声速风洞总压控制策略设计[J].实验流体力学, 2016, 30(4): 87-92. http://d.old.wanfangdata.com.cn/Periodical/ltlxsyycl201604015
Li Z S, Yang P C, Chen D, et al. The design of total pressure control strategy for 0. 6m continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(4): 87-92. http://d.old.wanfangdata.com.cn/Periodical/ltlxsyycl201604015
|
[20] |
明赐东.调节阀计算选型使用[M].成都:成都科技大学出版社, 1999.
Ming C D. Calculation and selection of regulating valve[M]. Chendu: Chengdu University of Science and Technology Press, 1999.
|
[21] |
张强, 魏建华, 时文卓.采用软溢流模糊PID控制器的液压垫压边力控制[J].浙江大学学报(工学版), 2017, 51(6): 1143-1152. http://d.old.wanfangdata.com.cn/Periodical/zjdxxb-gx201706012
Zhang Q, Wei J H, Shi W Z. Blank holder force control of hydraulic cushion with soft relief fuzzy PID controller[J]. Journal of Zhejiang University(Engineering Science), 2017, 51(6): 1143-1152. http://d.old.wanfangdata.com.cn/Periodical/zjdxxb-gx201706012
|
[1] | DU Baihe, ZHANG Songhe, GE Qiang, WANG Maogang. Study on flow field characteristics of inert gas-air hybrid arc[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(5): 69-75. DOI: 10.11729/syltlx20210052 |
[2] | ZHANG Xinghuan, ZHANG Pingtao, PENG Bo, YI Xian. Prediction of icing wind tunnel temperature field with machine learning[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(5): 8-15. DOI: 10.11729/syltlx20210196 |
[3] | Fu Cheng, Zhao Bo, Xu Dachuan, Liao Daxiong, Pei Haitao, Zhu Bo, Qin Honggang. Investigation on flow turbulent characteristics of plate-fin and tube-fin heat exchanger[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(6): 22-27. DOI: 10.11729/syltlx20190036 |
[4] | Wang Feng, Xu Jinglei, Wang Yangsheng. Study of flow field characteristics of an over-under TBCC exhaust system during mode transition process[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 68-75. DOI: 10.11729/syltlx20190037 |
[5] | Gong Jishuang, Zhou Lin, Zhang Yining, Teng Honghui. Investigation on flow field structure of rotating detonation using the method of characteristics[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(1): 89-96. DOI: 10.11729/syltlx20180072 |
[6] | Liao Daxiong, Chen Jiming, Zheng Juan, Chen Qin, Pei Haitao, Wu Shenghao. General performance of 0.6m continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 88-93. DOI: 10.11729/syltlx20170086 |
[7] | Yang Hong, Luo Yue, Wu Dong, Zhou Ping. Study on supersonic turbulence plate ablation flow field in arc heater[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(4): 72-77. DOI: 10.11729/syltlx20170181 |
[8] | Yu Mingxing, Bai Shuxin, Xu Xiaoliang, Cao Zhanwei. Research on method for evaluating the thermal protective performance of non-catalysis material in non-equilibrium flow[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4): 84-89. DOI: 10.11729/syltlx20170084 |
[9] | Luo Yue, Zhou Wei, Yang Hong, Chen Wei. CFD analysis of the arc heater turbulent flow field of flat plate testing[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 86-92. DOI: 10.11729/syltlx20160088 |
[10] | Yang Bo, Liu Sen. Investigation of the performance of flow field in supersonic/hypersonic wind tunnel with different test section geometry configurations[J]. Journal of Experiments in Fluid Mechanics, 2014, (4): 59-64. DOI: 10.11729/syltlx20130023 |
1. |
韩笑,高创,郑怡彤,刘小兵. 切角凹槽矩形截面桥塔的气动特性试验研究. 石家庄铁道大学学报(自然科学版). 2024(01): 9-15+23 .
![]() | |
2. |
白桦,刘博祥,姬乃川,李加武. 节段模型二元端板合理尺寸估算方法. 振动与冲击. 2023(02): 312-320 .
![]() | |
3. |
王仰雪,刘庆宽,靖洪淼,李震,孙一飞. 倾斜栏杆对流线型箱梁涡激振动性能影响的试验研究. 振动与冲击. 2023(06): 232-239+254 .
![]() | |
4. |
于畅,仇法梅,田学东,杨群,刘小兵. 圆角矩形柱平均气动力特性的雷诺数效应试验研究. 石家庄铁道大学学报(自然科学版). 2023(02): 29-34 .
![]() | |
5. |
杨群,于畅,刘小兵,刘庆宽. 不同圆角率的方形断面斯特罗哈数的雷诺数效应研究. 振动与冲击. 2023(11): 223-231 .
![]() | |
6. |
刘庆宽,王仰雪,孙一飞,李震,韩原,靖洪淼. 栏杆高度对流线型箱梁涡振性能影响的试验研究. 湖南大学学报(自然科学版). 2023(07): 140-150 .
![]() | |
7. |
刘路路,杨皓然,邹云峰,何旭辉,韩艳,陈志强. 公铁同层双幅非对称主梁气动干扰特性研究. 铁道科学与工程学报. 2023(10): 3861-3872 .
![]() | |
8. |
杨群,于畅,于文文,刘小兵. 圆角方柱气动特性的风洞试验研究. 振动与冲击. 2023(24): 59-68 .
![]() | |
9. |
韩振,李波,甄伟,杨庆山,田玉基. 宽厚比为5的超高层建筑风荷载特性研究. 哈尔滨工程大学学报. 2022(02): 196-202 .
![]() | |
10. |
张庆华,马文勇,杨杰,张彦,周帅伟. 不同风倾角下典型等边角钢静风力风洞试验研究. 振动工程学报. 2022(02): 277-283 .
![]() | |
11. |
白桦,王涵,姬乃川,李加武. 节段模型长宽比对风洞测力试验及计算分析的影响. 中国公路学报. 2022(08): 202-212 .
![]() | |
12. |
杨群,刘庆宽,韩瑞,刘小兵. 不同圆角率的方形断面气动特性的雷诺数效应. 振动与冲击. 2020(04): 150-156 .
![]() | |
13. |
沈国辉,姚剑锋,郭勇,邢月龙,楼文娟. 直径30 cm圆柱的气动力参数和绕流特性研究. 振动与冲击. 2020(06): 22-28 .
![]() | |
14. |
温青,池俊豪,华旭刚,王修勇,孙洪鑫. 端部条件和展弦比对矩形断面节段模型气动力特征的影响. 实验流体力学. 2020(04): 36-43 .
![]() | |
15. |
任若松,梁新华,刘小兵,马文勇,刘庆宽. 准流线型桥梁断面气动力特性的雷诺数效应研究. 工程力学. 2020(S1): 139-144+167 .
![]() | |
16. |
李海飞,梁新华,孙一飞,崔会敏,刘庆宽. 流线型桥梁断面表面脉动风荷载特性研究. 工程力学. 2020(S1): 242-248+260 .
![]() | |
17. |
马文勇,汪冠亚,郑熙,陈铁,李智,张程远,方平治. 端部状态对斜置圆柱气动力分布的影响. 实验流体力学. 2019(02): 43-50 .
![]() | |
31. |
杨群,刘庆宽,孙亚松,刘小兵. 圆角方形断面气动特性试验. 振动.测试与诊断. 2020(01): 140-147+208 .
![]() |