Chen Dan, Zhang Yongshuang, Li Gang, Guo Shouchun, Shen Mou. A design of total pressure control method for continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(6): 65-71. DOI: 10.11729/syltlx20180094
Citation: Chen Dan, Zhang Yongshuang, Li Gang, Guo Shouchun, Shen Mou. A design of total pressure control method for continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(6): 65-71. DOI: 10.11729/syltlx20180094

A design of total pressure control method for continuous transonic wind tunnel

More Information
  • Received Date: July 30, 2018
  • Revised Date: November 05, 2018
  • The total pressure is the key indicator of the continuous transonic wind tunnel. The high control precision of the total pressure can improve the accuracy of the test data, and the fast adjustment speed is of great significance for shortening the time of the Mach polar curve. According to the main characteristics of the continuous transonic wind tunnel, such as the presence of various test conditions and many adjusting means of the flow field, the characteristics of the pressure regulating system and the coupling characteristics of different adjusting means for the continuous transonic wind tunnel have been analyzed firstly. Then the control precision of the total pressure and the characteristics of the regulating valve have been obtained for the continuous transonic wind tunnel. The valves combination strategy is designed according to different test conditions. Lastly the control algorithm of the segmented variable parameter combined with the fuzzy PID is used to adjust the total pressure accurately. The result of the wind tunnel test shows that while guaranteeing the time of each Mach pole curve, the total pressure control accuracy reaches 0.1% and the control strategy can adapt to the control requirement of the total pressure control for the continuous transonic wind tunnel.
  • [1]
    高川, 周波, 蒋婧妍, 等.基于Labview的大型超声速风洞总压测控系统设计与应用[J].测控技术, 2014, 33(8): 84-87. DOI: 10.3969/j.issn.1000-8829.2014.08.022

    Gao C, Zhou B, Jiang J Y, et al. Design and implementation of total pressure measurement and control system of large-scare supersonic wind tunnel based on Labview[J]. Measurement & Control Technology, 2014, 33(8): 84-87. DOI: 10.3969/j.issn.1000-8829.2014.08.022
    [2]
    褚卫华, 汤更生, 王帆. 2m×2m超声速风洞流场控制策略研究与实现[J].实验流体力学, 2012, 26(5): 98-102. DOI: 10.3969/j.issn.1672-9897.2012.05.021

    Chu W H, Tang G S, Wang F. Research and realization on the control strategies of the 2m×2m supersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(5): 98-102. DOI: 10.3969/j.issn.1672-9897.2012.05.021
    [3]
    易家宁.风洞马赫数的控制策略与控制方法研究[D].沈阳: 东北大学, 2014.

    Yi J N. Research on control strategy and control method of Mach number for wind tunnel[D]. Shenyang: Northeastern University, 2014.
    [4]
    杨海滨, 张伟, 罗承友, 等.模糊控制在风洞主气流压力自动调节系统中的应用[J].兵工自动化, 2015, 34(4): 39-42. http://d.old.wanfangdata.com.cn/Periodical/bgzdh201504012

    Yang H B, Zhang W, Luo C Y, et al. Application of fuzzy control in wind tunnel main airflow pressure auto-adjust system[J]. Ordnance Industry Automation, 2015, 34(4): 39-42. http://d.old.wanfangdata.com.cn/Periodical/bgzdh201504012
    [5]
    王博文, 黄叙辉, 秦建华, 等.遗传算法在跨超声速风洞总压控制中的应用[J].计算机测量与控制, 2017, 25(11): 74-77. http://d.old.wanfangdata.com.cn/Periodical/jsjzdclykz201711019

    Wang B W, Huang X H, Qin J H, et al. Application of genetic algorithms in total pressure control system of transonic and supersonic wind tunnel[J]. Computer Measurement and Control, 2017, 25(11): 74-77. http://d.old.wanfangdata.com.cn/Periodical/jsjzdclykz201711019
    [6]
    Nguyen N, Ardema M. Adjoint method and predictive control for 1-D flow in NASA Ames 11-Foot Transonic Wind Tunnel[R]. AIAA 2006-1433, 2006.
    [7]
    Chan D T, Balakrishna S, Walker E L, et al. Mach stability improvements using an existing second throat capability at the National Transonic Facility (Invited)[R]. AIAA 2015-0622, 2015.
    [8]
    张永双, 陈旦, 陈娇. NF-6连续式跨声速风洞马赫数控制方式比较与研究[J].实验流体力学, 2013, 27(2): 95-99. DOI: 10.3969/j.issn.1672-9897.2013.02.019

    Zhang Y S, Chen D, Chen J. Comparison and research on the Mach number control methods for the NF-6 continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(2): 95-99. DOI: 10.3969/j.issn.1672-9897.2013.02.019
    [9]
    郝礼书, 乔志德, 张永双, 等. NF-6风洞马赫数闭环控制系统设计研究[J].实验流体力学, 2010, 24(4): 85-88. DOI: 10.3969/j.issn.1672-9897.2010.04.019

    Hao L S, Qiao Z D, Zhang Y S, et al. Design research on the Mach number closed-loop control system in the NF-6 wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(4): 85-88. DOI: 10.3969/j.issn.1672-9897.2010.04.019
    [10]
    田昊, 云长江, 彭毅.增量PID算法在某风洞压力控制中的应用改进[J].计算机测量与控制, 2016, 24(3): 64-66. http://d.old.wanfangdata.com.cn/Periodical/jsjzdclykz201603018

    Tian H, Yun C J, Peng Y. Improving application of increment PID adjust method for pressure control in wind tunnel[J]. Computer Measurement and Control, 2016, 24(3): 64-66. http://d.old.wanfangdata.com.cn/Periodical/jsjzdclykz201603018
    [11]
    Balakrishna S, Kilgore W A, Thibodeaux J J. Control of large cryogenic tunnels[R]. AIAA-92-3930, 1992.
    [12]
    熊波, 周恩民, 程松, 等. 0. 6m连续式风洞调试运行关键技术研究[J].实验流体力学, 2016, 30(4): 81-86. http://d.old.wanfangdata.com.cn/Periodical/ltlxsyycl201604014

    Xiong B, Zhou E M, Cheng S, et al. Research on key technologies of debugging and operating in 0.6 m×0.6 m continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(4): 81-86. http://d.old.wanfangdata.com.cn/Periodical/ltlxsyycl201604014
    [13]
    Gobert J L. ETW control system: design and first results[R]. AIAA-94-2514, 1994.
    [14]
    廖达雄, 陈吉明, 彭强, 等.连续式跨声速风洞设计关键技术[J].实验流体力学, 2011, 25(4): 74-78. DOI: 10.3969/j.issn.1672-9897.2011.04.014

    Liao D X, Chen J M, Peng Q, et al. Key design techniques of the low noise continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(4): 74-78. DOI: 10.3969/j.issn.1672-9897.2011.04.014
    [15]
    Paryz R W. Subsonic transonic Applied refinements By Using Key Strategies-STARBUKS in the NASA Langley Research Center National Transonic Facility[R]. AIAA 2014-1481, 2014.
    [16]
    连晓飞.基于遗传算法优化BP网络的风洞马赫数控制研究[D].沈阳: 东北大学, 2011.

    Lian X F. Wind tunnel Mach number control based on genetic algorithm optimized BP-Neural network[D]. Shenyang: Northeastern University, 2011.
    [17]
    Schulz M, Quest J. New techniques for operation in cryogenic windtunnels[R]. AIAA 2007-749, 2007.
    [18]
    Jackson F M. Progress update on the AEDC PWT sustainment program[R]. AIAA 2004-2500, 2004.
    [19]
    黎壮声, 杨鹏程, 陈旦, 等. 0. 6m连续式跨声速风洞总压控制策略设计[J].实验流体力学, 2016, 30(4): 87-92. http://d.old.wanfangdata.com.cn/Periodical/ltlxsyycl201604015

    Li Z S, Yang P C, Chen D, et al. The design of total pressure control strategy for 0. 6m continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(4): 87-92. http://d.old.wanfangdata.com.cn/Periodical/ltlxsyycl201604015
    [20]
    明赐东.调节阀计算选型使用[M].成都:成都科技大学出版社, 1999.

    Ming C D. Calculation and selection of regulating valve[M]. Chendu: Chengdu University of Science and Technology Press, 1999.
    [21]
    张强, 魏建华, 时文卓.采用软溢流模糊PID控制器的液压垫压边力控制[J].浙江大学学报(工学版), 2017, 51(6): 1143-1152. http://d.old.wanfangdata.com.cn/Periodical/zjdxxb-gx201706012

    Zhang Q, Wei J H, Shi W Z. Blank holder force control of hydraulic cushion with soft relief fuzzy PID controller[J]. Journal of Zhejiang University(Engineering Science), 2017, 51(6): 1143-1152. http://d.old.wanfangdata.com.cn/Periodical/zjdxxb-gx201706012
  • Related Articles

    [1]DU Baihe, ZHANG Songhe, GE Qiang, WANG Maogang. Study on flow field characteristics of inert gas-air hybrid arc[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(5): 69-75. DOI: 10.11729/syltlx20210052
    [2]ZHANG Xinghuan, ZHANG Pingtao, PENG Bo, YI Xian. Prediction of icing wind tunnel temperature field with machine learning[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(5): 8-15. DOI: 10.11729/syltlx20210196
    [3]Fu Cheng, Zhao Bo, Xu Dachuan, Liao Daxiong, Pei Haitao, Zhu Bo, Qin Honggang. Investigation on flow turbulent characteristics of plate-fin and tube-fin heat exchanger[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(6): 22-27. DOI: 10.11729/syltlx20190036
    [4]Wang Feng, Xu Jinglei, Wang Yangsheng. Study of flow field characteristics of an over-under TBCC exhaust system during mode transition process[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 68-75. DOI: 10.11729/syltlx20190037
    [5]Gong Jishuang, Zhou Lin, Zhang Yining, Teng Honghui. Investigation on flow field structure of rotating detonation using the method of characteristics[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(1): 89-96. DOI: 10.11729/syltlx20180072
    [6]Liao Daxiong, Chen Jiming, Zheng Juan, Chen Qin, Pei Haitao, Wu Shenghao. General performance of 0.6m continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 88-93. DOI: 10.11729/syltlx20170086
    [7]Yang Hong, Luo Yue, Wu Dong, Zhou Ping. Study on supersonic turbulence plate ablation flow field in arc heater[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(4): 72-77. DOI: 10.11729/syltlx20170181
    [8]Yu Mingxing, Bai Shuxin, Xu Xiaoliang, Cao Zhanwei. Research on method for evaluating the thermal protective performance of non-catalysis material in non-equilibrium flow[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4): 84-89. DOI: 10.11729/syltlx20170084
    [9]Luo Yue, Zhou Wei, Yang Hong, Chen Wei. CFD analysis of the arc heater turbulent flow field of flat plate testing[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 86-92. DOI: 10.11729/syltlx20160088
    [10]Yang Bo, Liu Sen. Investigation of the performance of flow field in supersonic/hypersonic wind tunnel with different test section geometry configurations[J]. Journal of Experiments in Fluid Mechanics, 2014, (4): 59-64. DOI: 10.11729/syltlx20130023
  • Cited by

    Periodical cited type(18)

    1. 韩笑,高创,郑怡彤,刘小兵. 切角凹槽矩形截面桥塔的气动特性试验研究. 石家庄铁道大学学报(自然科学版). 2024(01): 9-15+23 .
    2. 白桦,刘博祥,姬乃川,李加武. 节段模型二元端板合理尺寸估算方法. 振动与冲击. 2023(02): 312-320 .
    3. 王仰雪,刘庆宽,靖洪淼,李震,孙一飞. 倾斜栏杆对流线型箱梁涡激振动性能影响的试验研究. 振动与冲击. 2023(06): 232-239+254 .
    4. 于畅,仇法梅,田学东,杨群,刘小兵. 圆角矩形柱平均气动力特性的雷诺数效应试验研究. 石家庄铁道大学学报(自然科学版). 2023(02): 29-34 .
    5. 杨群,于畅,刘小兵,刘庆宽. 不同圆角率的方形断面斯特罗哈数的雷诺数效应研究. 振动与冲击. 2023(11): 223-231 .
    6. 刘庆宽,王仰雪,孙一飞,李震,韩原,靖洪淼. 栏杆高度对流线型箱梁涡振性能影响的试验研究. 湖南大学学报(自然科学版). 2023(07): 140-150 .
    7. 刘路路,杨皓然,邹云峰,何旭辉,韩艳,陈志强. 公铁同层双幅非对称主梁气动干扰特性研究. 铁道科学与工程学报. 2023(10): 3861-3872 .
    8. 杨群,于畅,于文文,刘小兵. 圆角方柱气动特性的风洞试验研究. 振动与冲击. 2023(24): 59-68 .
    9. 韩振,李波,甄伟,杨庆山,田玉基. 宽厚比为5的超高层建筑风荷载特性研究. 哈尔滨工程大学学报. 2022(02): 196-202 .
    10. 张庆华,马文勇,杨杰,张彦,周帅伟. 不同风倾角下典型等边角钢静风力风洞试验研究. 振动工程学报. 2022(02): 277-283 .
    11. 白桦,王涵,姬乃川,李加武. 节段模型长宽比对风洞测力试验及计算分析的影响. 中国公路学报. 2022(08): 202-212 .
    12. 杨群,刘庆宽,韩瑞,刘小兵. 不同圆角率的方形断面气动特性的雷诺数效应. 振动与冲击. 2020(04): 150-156 .
    13. 沈国辉,姚剑锋,郭勇,邢月龙,楼文娟. 直径30 cm圆柱的气动力参数和绕流特性研究. 振动与冲击. 2020(06): 22-28 .
    14. 温青,池俊豪,华旭刚,王修勇,孙洪鑫. 端部条件和展弦比对矩形断面节段模型气动力特征的影响. 实验流体力学. 2020(04): 36-43 . 本站查看
    15. 任若松,梁新华,刘小兵,马文勇,刘庆宽. 准流线型桥梁断面气动力特性的雷诺数效应研究. 工程力学. 2020(S1): 139-144+167 .
    16. 李海飞,梁新华,孙一飞,崔会敏,刘庆宽. 流线型桥梁断面表面脉动风荷载特性研究. 工程力学. 2020(S1): 242-248+260 .
    17. 马文勇,汪冠亚,郑熙,陈铁,李智,张程远,方平治. 端部状态对斜置圆柱气动力分布的影响. 实验流体力学. 2019(02): 43-50 . 本站查看
    31. 杨群,刘庆宽,孙亚松,刘小兵. 圆角方形断面气动特性试验. 振动.测试与诊断. 2020(01): 140-147+208 .

    Other cited types(16)

Catalog

    Article Metrics

    Article views (527) PDF downloads (25) Cited by(34)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close