Citation: | HUANG J, GUO Y X, JI J J, et al. Aerodynamic pressure field reconstruction from sparse points using data assimilation method[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(5): 9-17. DOI: 10.11729/syltlx20230021 |
[1] |
TEDUKA N, KAMEDA M, ASAI K, et al. Adsorptive pressure-sensitive coatings for unsteady flow measurements[J]. Transactions of the Japan Society of Mechanical Engineers, Series B, 2002, 68(669): 1391–1399. doi: 10.1299/kikaib.68.1391
|
[2] |
李峰, 王洪博. 风洞分布测压试验校准技术发展现状[J]. 计测技术, 2020, 40(1): 1–7. DOI: 10.11823/j.issn.1674-5795.2020.01.01
LI F, WANG H B. Overview of calibration technology for wind tunnel distribution pressure test[J]. Metrology & Measurement Technology, 2020, 40(1): 1–7. doi: 10.11823/j.issn.1674-5795.2020.01.01
|
[3] |
XIONG W N, ZHU C, GUO D L, et al. Bio-inspired, intelligent flexible sensing skin for multifunctional flying perception[J]. Nano Energy, 2021, 90: 106550. doi: 10.1016/j.nanoen.2021.106550
|
[4] |
郭栋梁, 侯超, 朱臣, 等. 飞行器表面气动载荷的柔性智能蒙皮多参量测量[J]. 实验流体力学, 2022, 36(2): 146–154. DOI: 10.11729/syltlx20210115
GUO D L, HOU C, ZHU C, et al. Multi-parameter measurement of aerodynamic load via flexible sensing skin[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(2): 146–154. doi: 10.11729/syltlx20210115
|
[5] |
VAMSI KRISHNA C, WANG M Y, HEMATI M S, et al. Reconstructing the time evolution of wall-bounded turbulent flows from non-time-resolved PIV measurements[J]. Physical Review Fluids, 2020, 5(5): 054604. doi: 10.1103/physrevfluids.5.054604
|
[6] |
CALLAHAM J L, MAEDA K, BRUNTON S L. Robust flow reconstruction from limited measurements via sparse representation[J]. Physical Review Fluids, 2019, 4(10): 103907. doi: 10.1103/physrevfluids.4.103907
|
[7] |
SUN L, WANG J X. Physics-constrained Bayesian neural network for fluid flow reconstruction with sparse and noisy data[J]. Theoretical and Applied Mechanics Letters, 2020, 10(3): 161–169. doi: 10.1016/j.taml.2020.01.031
|
[8] |
李静, 张伟伟. 基于Gappy POD的流场数据填补方法[J]. 气体物理, 2020, 5(4): 1–10. DOI: 10.19527/j.cnki.2096-1642.0791
LI J, ZHANG W W. Gappy proper orthogonal decomposition for flow data reconstruction[J]. Physics of Gases, 2020, 5(4): 1–10. doi: 10.19527/j.cnki.2096-1642.0791
|
[9] |
周铸, 黄江涛, 黄勇, 等. CFD技术在航空工程领域的应用、挑战与发展[J]. 航空学报, 2017, 38(3): 020891. DOI: 10.7527/S1000-6893.2016.0311
ZHOU Z, HUANG J T, HUANG Y, et al. CFD technology in aeronautic engineering field: applications, challenges and development[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3): 020891. doi: 10.7527/S1000-6893.2016.0311
|
[10] |
GARNER H C, ROGERS E W, ACUM W E, et al. Subsonic wind tunnel wall corrections[R]. AD0657092, 1966.
|
[11] |
CARRASSI A, BOCQUET M, BERTINO L, et al. Data assimilation in the geosciences: an overview of methods, issues, and perspectives[J]. WIREs Climate Change, 2018, 9(5): e535. doi: 10.1002/wcc.535
|
[12] |
CHANDRAMOULI P, MEMIN E, HEITZ D. 4D large scale variational data assimilation of a turbulent flow with a dynamics error model[J]. Journal of Computational Physics, 2020, 412: 109446. doi: 10.1016/j.jcp.2020.109446
|
[13] |
BELLIGOLI Z, DWIGHT R, EITELBERG G. Assessment of a data assimilation technique for wind tunnel wall interference corrections[C]//Proc of the AIAA Scitech 2019 Forum. 2019: 0939. doi: 10.2514/6.2019-0939
|
[14] |
LI Q, LI R Y, JI K F, et al. Kalman filter and its application[C]//Proc of the 2015 8th International Conference on Intelligent Networks and Intelligent Systems (ICINIS). 2016: 74-77. doi: 10.1109/ICINIS.2015.35
|
[15] |
NERGER L, JANJIĆ T, SCHRÖTER J, et al. A unification of ensemble square root Kalman filters[J]. Monthly Weather Review, 2012, 140(7): 2335–2345. doi: 10.1175/mwr-d-11-00102.1
|
[16] |
BISHOP C H, ETHERTON B J, MAJUMDAR S J. Adaptive sampling with the ensemble transform Kalman filter. Part I: theoretical aspects[J]. Monthly Weather Review, 2001, 129(3): 420–436. doi: 10.1175/1520-0493(2001)129<0420:aswtet>2.0.co;2
|
[17] |
LE PROVOST M, ELDREDGE J D. Ensemble Kalman filter for vortex models of disturbed aerodynamic flows[J]. Physical Review Fluids, 2021, 6(5): 050506. doi: 10.1103/physrevfluids.6.050506
|
[18] |
KATO H, YOSHIZAWA A, UENO G, et al. A data assimilation methodology for reconstructing turbulent flows around aircraft[J]. Journal of Computational Physics, 2015, 283: 559–581. doi: 10.1016/j.jcp.2014.12.013
|
[19] |
LI T X, HE C X, WEN X, et al. Data assimilation of rotor flow at hovering state using ensemble Kalman filter[J]. Journal of Visualization, 2023: 1–25. doi: 10.1007/s12650-022-00906-y
|
[20] |
MCKAY M D, BECKMAN R J, CONOVER W J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics, 2000, 42(1): 55–61. doi: 10.1080/00401706.2000.10485979
|
[21] |
HAASE W, BRADSMA F, ELSHOLZ E, et al. EUROVAL-An European initiative on validation of CFD codes[M]. Wiesbaden: Springer Fachmedien Wiesbaden, 1993, 42: 123-184. doi: 10.1007/978-3-663-14131-0.
|
[22] |
COOK P H, MCDONALD M A, FIRMIN M C P. Aerofoil RAE 2822: pressure distributions, and boundary layer and wake measurements[C]//Proc of the AGARD Report AR. 1979.
|
[23] |
LADSON C L, HILL A S, JOHNSON W G. Pressure distributions from high Reynolds number transonic tests of an NACA 0012 airfoil in the Langley 0.3-meter transonic cryogenic tunnel[R]. NASA-TM-100526, 1987.
|
1. |
李强,操小龙. 超声速进气道压力估算方法及验证. 航空工程进展. 2020(06): 894-899 .
![]() |