Deng Xiaoman, Fan Jinlei, Yu Li, Li Chunyan, He Fu. General data processing system for multiple wind tunnels[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4): 64-70. DOI: 10.11729/syltlx20170051
Citation: Deng Xiaoman, Fan Jinlei, Yu Li, Li Chunyan, He Fu. General data processing system for multiple wind tunnels[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4): 64-70. DOI: 10.11729/syltlx20170051

General data processing system for multiple wind tunnels

More Information
  • Received Date: April 24, 2017
  • Revised Date: June 01, 2017
  • In order to improve the standardization and efficiency of the wind tunnel test data system and improve the reliability and automation of data processing and analysis, a general test data processing system is established for multiple wind tunnels and a variety of test types. On the basis of standardized data processing methodology, processes, symbols and formats, the general system uses the service-oriented software architecture, heterogeneous data storage management, the user defined formula expansion based on dynamic compilation, and the visualized file format editing based on metadata and template. Key problems of the general system are solved, such as the system architecture, processing methods and process control, data flow and file output, etc. In the last three years, 71.2% of test data of 6 wind tunnels in the High Speed Institute of China Aerodynamics Research and Development Center were processed by the general system, covered test types including single and multiple balances forces and moments measurement, pressure measurement, venting measurement, mixed forces and pressure measurement, jet test and some special tests. With the characteristics of being universal, efficient, and open, the general system is a data processing and management solution that worth promoting.
  • [1]
    AIAA/GTTC. AIAA R-092-1-2003. Recommended practice:wind tunnel testing-Part 1:management volume[S]. Alexander Bell Drive, Reston, Virginia, USA, 2003.
    [2]
    AIAA/GTTC. AIAA R-092-2-2003. Recommended practice:wind tunnel testing-Part 2:practitioners volume[S]. Alexander Bell Drive, Reston, Virginia, USA, 2003.
    [3]
    战培国.美国AIAA风洞试验标准体系研究[J].飞航导弹, 2015, (11):21-25. http://www.cnki.com.cn/Article/CJFDTOTAL-FHDD201511005.htm
    [4]
    AIAA/GTTC. AIAA G-129-2012. Nomenclature and axis system for aerodynamic wind tunnel testing[S]. Alexander Bell Drive, Reston, Virginia, USA, 2012.
    [5]
    Nikodym S. Test planning guide for high speed wind tunnels[M]. 5th ed. Moffett Field, California:Ames Research Center, 2005.
    [6]
    van der DRAAI R, KRACK D. Wind tunnel data format for test results presentation[R]. ATA-TR-001-2002, 2006.
    [7]
    Abbott C D. Status of AEDC Transonic, Supersonic, and Hypersonic Wind Tunnel Improvement Programs[R]. AIAA-2012-3172, 2012.
    [8]
    Melanson M R, Chang M, Baker W M. Wind tunnel testing's future-a vision of the next generation of wind tunnel test requirements and facilities[R]. AIAA-2010-0142, 2010.
    [9]
    Detlef Krack. The Generic Automated Integrated Universal System(GAIUS) for Wind Tunnels[R]. AIAA-2009-2060, 2009.
    [10]
    Walton J D, Filman R E. Korsmeyer D J. Evolution of the DARWIN system[R]. N20000092055, 2001.
    [11]
    刘忠华, 唐乔乔, 张卫国, 等. 基于LabVIEW的8m×6m风洞数据处理软件设计[C]//中国空气动力学会测控技术专业委员会第六届三次学术会议论文集. 中国空气动力学会测控技术专委会, 2012.
    [12]
    伊宏伟, 王军. FL-3风洞数据处理软件规范化设计[C]//中国空气动力学会测控技术专业委员会第六届二次学术会议论文集. 中国空气动力学会测控技术专委会, 2011.
    [13]
    王艳. FL-2风洞试验信息自动化管理系统研究[C]//中国空气动力学会测控技术专业委员会第六届四次学术会议论文集. 中国空气动力学会测控技术专委会, 2013.
    [14]
    熊能, 林俊, 王发祥, 等. GJB 7658-2012飞行器全模型测力高速风洞试验方法[S]. 北京: 总装备部军标出版社, 2012.

    Xiong N, Lin J, Wang F X, et al. GJB7658-2012 Test method for aerodynamic force measurement of aircraft full model in high speed wind tunnel[S].Beijing:General Armament Department Military Standard Publishing Department, 2012.
    [15]
    刘沛清, 邵箭, 李周复, 等. GB/T l6638. 1-2008空气动力学概念、量和符号第1部分空气动力学常用术语[S]. 北京: 中国标准出版社, 2008.

    Liu P Q, Shao J, Li Z F, et al. GB/T l6638.1-2008 Aerodynamics-Concepts, quantities and symbols-Part 1:Aerodynamic terms in common use[S]. Beijing:Standards Press of China, 2008.
    [16]
    刘沛清, 焦志强, 李周复, 等. GB/T l6638. 2-2008空气动力学概念、量和符号第2部分坐标轴系和飞行器运动状态量[S]. 北京: 中国标准出版社, 2008.

    Liu P Q, Jiao Z Q, Li Z F, et al. GB/T l6638.2-2008 Aerodynamics-Concepts, quantities and symbols-Part 2:Axis systems and aircraft motion state quantities[S]. Beijing:Standards Press of China, 2008.
    [17]
    陈晏清, 邵箭, 焦志强, 等. GB/T l6638. 4-2008空气动力学概念、量和符号第4部分飞行器的空气动力、力矩及其系数和导数[S]. 北京: 中国标准出版社, 2008.

    Chen Y Q, Shao J, Jiao Z Q, et al. GB/T l6638.4-2008 Aerodynamics-Concepts, quantities and symbols-Part 4:Aerodynamic forces, moments, their coefficients and derivatives of aircraft[S]. Beijing:Standards Press of China, 2008.
    [18]
    路波, 余立, 郭洪涛, 等.高速风洞测力试验数据处理方法[M].北京:国防工业出版社, 2014.
    [19]
    蒋金楠. WCF全面解析[M].北京:电子工业出版社, 2012.
    [20]
    MacDonald Matthew. WPF编程宝典——使用C#2012和.NET4.5[M].第4版.北京:清华大学出版社, 2013.

    MacDonald M. Pro WPF in C# 2012:Windows presentation foundation in.NET 4.5[M]. 4th ed. Beijing:Tsinghua University Press, 2013
  • Related Articles

    [1]LIU Jingcheng, LIU Jianhua, ZHANG Yongming. Review of flow stability and natural transition of boundary layers on underwater axisymmetric bodies[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(2): 40-51. DOI: 10.11729/syltlx20230103
    [2]CHEN Xiang, ZHAN Jingxia, CHEN Ke, WEI Zhongcheng, CAO Yuan. Unsteady aerodynamic modeling research and virtual flight test verification[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(3): 65-72. DOI: 10.11729/syltlx20210143
    [3]LIAN Zhenzeng, ZHANG Hui, YAN Wencheng, KONG Peng. Research on improvement measures of transverse heading of general aircraft based on spoiler[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(5): 34-39. DOI: 10.11729/syltlx20200066
    [4]LIU Yu, XIAO Baoguo, WANG Lan, CHEN Weiqiang. Standing stability enhancement method of oblique detonation waves in a confined space and its experimental validation[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 109-116. DOI: 10.11729/syltlx20200084
    [5]YAO Zhaohui, ZHANG Jingxian, HAO Pengfei. Effect of surface micro/nano-structure on gas-water interface stability and flow drag reduction[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 73-79. DOI: 10.11729/syltlx20190161
    [6]ZHANG Shiyu, ZHAO Junbo, FU Zengliang, LIANG Bin, ZHOU Jiajian. Wind tunnel based virtual flight testing research of F-16 fighter[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 49-54, 86. DOI: 10.11729/syltlx20180157
    [7]MENG Xuan-shi, CAI Jin-sheng, LUO Shi-jun, LIU Feng. Effects of low dorsal fin on the stability of vortex flow over slender delta wing[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(3): 45-49. DOI: 10.3969/j.issn.1672-9897.2012.03.008
    [8]SHAO Ya-hui, GE Yao-jun, KE Shi-tang, YANG Yong-xin. Theoretical research on the aerodynamic stability of super-longspan suspension bridge with a main span of 5000m[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(1): 30-36. DOI: 10.3969/j.issn.1672-9897.2012.01.007
    [9]SHAO Ya-hui, GE Yao-jun, KE Shi-tang, YANG Yong-xin. Wind tunnel test on the aerodynamic stability of super-long span suspension bridge with a main span of 5000m[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(6): 38-44. DOI: 10.3969/j.issn.1672-9897.2011.06.008
    [10]CHEN Bin. Investigation of improving the lateral static stability for the aircraft applied to high-subsonic flow and high angle of attack[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(1): 109-112. DOI: 10.3969/j.issn.1672-9897.2005.01.022
  • Cited by

    Periodical cited type(0)

    Other cited types(3)

Catalog

    Article Metrics

    Article views (261) PDF downloads (28) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close