Yin Xiang, Wang Yiping, Du Mintao, Su Chuqi, Sun Hao. Influence of different sub-grid scale models on simulation accuracy of aerodynamic noise[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(6): 78-83. DOI: 10.11729/syltlx20190109
Citation: Yin Xiang, Wang Yiping, Du Mintao, Su Chuqi, Sun Hao. Influence of different sub-grid scale models on simulation accuracy of aerodynamic noise[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(6): 78-83. DOI: 10.11729/syltlx20190109

Influence of different sub-grid scale models on simulation accuracy of aerodynamic noise

More Information
  • Received Date: August 20, 2019
  • Revised Date: October 13, 2019
  • Based on different sub-grid scale models, the Large Eddy Simulation (LES) is used to calculate the unsteady flow field and sound field of the Hyundai Simple Model (HSM). The experimental data of the internal monitoring points of the model are used to verify the simulation results. The results show that using the WMLES model can get more accurate results.
  • [1]
    Buchheim R, Dobrzynski W, Mankau H, et al. Vehicle interior noise related to external aerodynamics[J]. International Journal of Vehicle Design, 1982, 3(4): 398-410. http://cn.bing.com/academic/profile?id=fa6c46196c5db3165115c60a7d4a7d56&encoded=0&v=paper_preview&mkt=zh-cn
    [2]
    Smagorinsky J. General circulation experiments with the primitive equtions: Ⅰ. the basic experiments[J]. Monthly Weather Review, 1963, 91(3): 99-164. DOI: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
    [3]
    Gallerano F, Napoli E. A dynamic subgrid-scale tensorial eddy viscosity model[J]. Continuum Mechanics and Thermody-namics, 1999, 11(1): 1-14. DOI: 10.1007/s001610050101
    [4]
    Nicoud F, Ducros F. Subgrid-scale stress modelling based on the square of the velocity gradient tensor[J]. Flow, Turbulence and Combustion, 1999, 62(3): 183-200. DOI: 10.1023/A:1009995426001
    [5]
    Shur M L, Spalart P R, Strelets M K, et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat & Fluid Flow, 2008, 29(6): 1638-1649. http://cn.bing.com/academic/profile?id=01a4699e8b1b3b23a24c9beacb1269f8&encoded=0&v=paper_preview&mkt=zh-cn
    [6]
    Kim W W, Menon S. Application of the localized dynamic subgrid-scale model to turbulent wall-bounded flows[R]. AIAA 1997-0210, 1997.
    [7]
    Oberai A A, Roknaldin F, Hughes T J R. Computational procedures for determining structural-acoustic response due to hydrodynamic sources[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 190(3-4): 345-361. DOI: 10.1016/S0045-7825(00)00206-1
    [8]
    Yao H D, Davidson L. Generation of interior cavity noise due to window vibration excited by turbulent flows past a generic side-view mirror[J]. Physics of Fluids, 2018, 30(3): 36104. DOI: 10.1063/1.5008611
    [9]
    Mendonca F G, Connelly T, Bonthu S, et al. CAE-based prediction of aero-vibro-acoustic interior noise transmission for a simple test vehicle[R]. SAE Technical Paper 2014-01-0592, 2014.
    [10]
    Khondge A, Lee M. Numerical investigation of sunroof buffeting for hyundai simplified model[J]. Korea Noise Vibration Engineering Association Papers, 2014, 24(3): 180-188. DOI: 10.5050/KSNVE.2014.24.3.180
    [11]
    Cho M, Kim H G, Oh C, et al. Benchmark study of numerical solvers for the prediction of interior noise transmission excited by a-pillar vortex[C]//Proc of the 43th International Congress and Exposition on Noise Control Engineering (Inter-noise). 2014.
    [12]
    Kim M S, Lee J H, Kee J D, et al. Hyundai full scale aero-acoustic wind tunnel[R]. SAE Technical Paper 2001-01-0629, 2001.
  • Related Articles

    [1]ZHANG Bin, ZHOU Genshui, GAO Debao, DU Xinming, FAN Xiaobing, LIU Jianhua. Vortex evolution of the flow around an underwater vehicle in density-stratified flow[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(2): 31-39. DOI: 10.11729/syltlx20230137
    [2]XU KeWei, GAO Qi, WAN Min, ZHANG Ke. In vitro experimental simulation study of the hemodynamics based on the FDA benchmark model[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20230146
    [3]LI Linkai, HUANG Zi, GU Yunsong, PENG Zhenjun, ZHANG Zongyuan, LEI Yu. Development of forebody asymmetric vortex control based on alternating synthetic jet and the verification on model free flight[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 96-104. DOI: 10.11729/syltlx20230042
    [4]XU Chenzhou, DU Tao, HAN Zhonghua, ZAN Bowen, MOU Yu, ZHANG Jinze. Comparison of machine learning data fusion methods applied to aerodynamic modeling of rocket first stage with grid fins[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(3): 79-92. DOI: 10.11729/syltlx20210154
    [5]Wang Yigang, Jiao Yan, Zhang Jie. Evaluation of simplified automobile wind noise model based on main propagation path of sound and vibration[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(6): 90-94. DOI: 10.11729/syltlx20190106
    [6]Zhu Bo, Wang Yuanxing, Yu Yongsheng. Vortex-induced vibration measurement and analysis of model-sting system in wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2014, (5): 59-64. DOI: 10.11729/syltlx20130091
    [7]QIAN Wei, ZHANG Gui-jiang, LIU Zhong-kun. Design, manufacture and low speed wind tunnel test of a high aspect ratio wing static aeroelastic model[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(3): 93-97. DOI: 10.3969/j.issn.1672-9897.2013.03.018
    [8]GUO Dong-peng, QIAO Qing-dang, YAO Ren-tai. Examining the k-ε(RNG)model and LES of flow feature and turbulence dispersion around a building by means of wind tunnel tests[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(5): 55-63. DOI: 10.3969/j.issn.1672-9897.2011.05.012
    [9]XIAN Rong, LIAO Hai-li, LI Ming-shui. Analysis of vortex-induced vibration of large-scale section model of girder in wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2009, 23(4): 15-20. DOI: 10.3969/j.issn.1672-9897.2009.04.004
    [10]WU Jie, YE Zheng-yin. The effects of wind-tunnel model design on flowfield and aerodynamic behavior for large aspect-ratio wings[J]. Journal of Experiments in Fluid Mechanics, 2009, 23(2): 54-58. DOI: 10.3969/j.issn.1672-9897.2009.02.012
  • Cited by

    Periodical cited type(5)

    1. 田立丰,付双旭. 面向高速流场成像的聚焦纹影研究进展. 中山大学学报(自然科学版中英文). 2025(01): 238-249 .
    2. 郑星,黄海莹,毛勇建,张军,周东. 大口径爆炸激波管出口冲击波流场图像测量. 光学精密工程. 2024(15): 2355-2362 .
    3. 郭江涛,周一卉,胡大鹏,刘志军,黄兆锋,高凤. 压力振荡管内波系运动行为的可视化实验研究. 实验流体力学. 2024(05): 54-64 . 本站查看
    4. 岳茂雄,张弯洲,吴运刚,袁强,邓维鑫. 基于发散光反射式布局的大视场显示方法研究. 实验流体力学. 2021(03): 77-82 . 本站查看
    5. 王敏,谢爱民,黄训铭. 直接纹影成像技术初步研究. 兵器装备工程学报. 2020(10): 244-248 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (280) PDF downloads (17) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close